

Affiliated to

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, LUCKNOW

Evaluation Scheme & Syllabus

For

Bachelor of Technology Computer Science & Engineering (Regional Language)

First Year

(Effective from the Session: 2023-24)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Computer Science & Engineering (R) <u>Evaluation Scheme</u> SEMESTER-I

S.	Subject	Subject	Р	erio	ds	Ev	aluat	ion Schen	nes		nd ester	Total	Credit
No.	Codes		L	Т	Р	СТ	ТА	TOTAL	PS	TE	PE		
		3 WEEKS COMPUL	SOR	Y IN	DUC		N PRC	OGRAM					
1	BASH0103	Engineering Mathematics-I	3	1	0	30	20	50		100		150	4
2	BASH0101A	Engineering Physics	3	1	0	30	20	50		100		150	4
3	BASLH0101	Acquiring Business Communication (ABC)	2	0	0	30	20	50		50		100	2
4	BCSEH0103	Design Thinking-I	2	1	0	30	20	50		50		100	3
5	BCSEH0151	Problem-Solving using Python	0	0	6				50		100	150	3
6	BASH0151A	Engineering Physics Lab	0	0	2				25		25	50	1
7	BASLH0151	Acquiring Business Communication (ABC) Lab	0	0	4				50		50	100	2
8	BMEH0151	CAD and Digital Manufacturing	0	0	6				50		100	150	3
9		MOOCs (For B.Tech. Hons. Degree)											
		TOTAL										950	22

* List of MOOCs Based Recommended Courses for first year (Semester-I) B. Tech Students

S.No.	Subject Code	Course Name	University / Industry Partner Name	No of Hours	Credits
1	BMC0001	Design Thinking for innovation	Infosys Springboard	6 hrs	0.5
2	BMC0003	Programming Fundamentals using Python - Part 1	Infosys Springboard	43h 25m	3.5

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Bachelor of Technology Computer Science & Engineering (R) <u>Evaluation Scheme</u> SEMESTER-II

SI.	Subject	Subject	P	erio	ds	Ev	aluat	ion Schei	mes		nd ester	Total	Credit
No.	Codes	, , , , , , , , , , , , , , , , , , ,	L	Т	Р	СТ	TA	TOTAL	PS	TE	PE		
1	BASH0203	Engineering Mathematics-II	3	1	0	30	20	50		100		150	4
2	BECH0201	Basic Electrical and Electronics Engineering	3	1	0	30	20	50		100		150	4
3		Foreign Language	2	0	0	30	20	50		50		100	2
4	BCSEH0252	Advanced Python	0	0	6				50		100	150	3
5	BASLH0251	Communication for Career Enhancement	0	0	4				50		50	100	2
6	BECH0251	Basic Electrical and Electronics Engineering Lab	0	0	2				25		25	50	1
7	BCSEH0251	C Programming	0	0	6				50		100	150	3
8		MOOCs (For B.Tech. Hons. Degree)											
		TOTAL										850	19
Inter	Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester												

*Foreign Language:

1. BASLH0202 French

2. BASLH0203 German

3. BASLH0204 Japanese

* List of MOOCs Based Recommended Courses for first year (Semester-II) B. Tech Students

S. No.	Subject Code	Course Name	University/ Industry Partner Name	N. of Hours	Credits
1.	BMC0002	Next Gen Technologies	Infosys Springboard	10h 14m	0.5
2	BMC0004	Programming In C	Infosys Springboard	17h 7 m	1

PLEASE NOTE:-

• Internship (3-4 weeks) shall be conducted during summer break after II semester and will be assessed during III semester

Abbreviation Used:-

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., PE: Practical End Semester Exam.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

A student will be eligible to get Under Graduate degree with Honours only, if he/she completes the additional MOOCs courses such as Coursera certifications, or any other online courses recommended by the Institute (Equivalent to 20 credits). During Complete B.Tech. Program Guidelines for credit calculations are as follows.

- 1. For 6 to 12 Hours =0.5 Credit
- 2. For 13 to18 =1 Credit
- 3. For 19 to 24 =1.5 Credit
- 4. For 25 to 30 = 2 Credit
- 5. For 31 to 35 =2.5 Credit
- 6. For 36 to 41 =3 Credit
- 7. For 42 to 47 = 3.5 Credit
- 8. For 48 and above =4 Credit

For registration to MOOCs Courses, the students shall follow Coursera registration details as per the assigned login and password by the Institute these courses may be cleared during the B. Tech degree program (as per the list provided). After successful completion of these MOOCs courses, the students shall provide their successful completion status/certificates to the Controller of Examination (COE) of the Institute through their coordinators/Mentors only.

The students shall be awarded Honours Degree as per following criterion.

i. If he / she secures 7.50 as above CGPA.

- ii. Passed each subject of that degree program in the single attempt without any grace.
- iii. Successful completion of MOOCs based 20 credits

SYLLABUS

B. Tech.:- First Semester Branch- CSE/CSE-R/CS/IT/CSE(IOT)/ECE/ECE(VLSI)/ME/M.Tech.(Integrated) Subject Code- BASH0103 L - T - P 3 - 1 - 0 Subject Name- ENGINEERING MATHEMATICS - I No. of hours- 42

Course Objective- The objective of this course is to familiarize the graduate engineers with techniques in linear algebra, differential calculus-I, differential calculus-II and multivariable calculus. It aims to equip the students with standard concepts and tools from intermediate to advanced level that will enable them to tackle more advanced level of mathematics and applications that they would find useful in their disciplines.

Course Outcome – After completion of this course students are able to:

CO1 - Apply the concept of matrices to solve linear simultaneous equations

CO2- Apply the concept of successive differentiation and partial differentiation to solve problems of Leibnitz theorems and total derivatives.

CO3- Apply partial differentiation for evaluating maxima, minima, Taylor's series and Jacobians.

CO4- Apply the concept of multiple integral to find area, volume.

CO5- Solve the problems of Profit, Loss, Number & Series, Coding & decoding, Algebra.

Uni t	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assignment/ Lab	CO Mappin g
Unit 1	Matrices	Types of Matrices: Symmetric, Skew-	Classroom, PP T,	8	1.1, 1.2, 1.3, 1.4	CO1

Course Content

						,
		symmetric	M.Tutor,			
		and	Smart Board			
		Orthogonal				
		Matrices;				
		Complex				
		Matrices,				
		Inverse and				
		Rank of				
		matrix using				
		elementary				
		transformatio				
		ns, System of				
		linear				
		equations,				
		Characteristic				
		equation,				
		Cayley-				
		Hamilton				
		Theorem and				
		its				
		application,				
		Eigen values				
		and				
		eigenvectors;				
		Diagonalisatio				
		n of a Matrix.				
		Successive				
		Differentiatio				
		n (nth order				
		derivatives),				
		Leibnitz				
		theorem and	Classroom, PP			
		its	т,			
Unit	Differential	application,				
2	Calculus -I	Asymptotes,	M.Tutor,	8	2.1, 2.2, 2.3	CO2
		Curve tracing:	Smart Board			
		Cartesian and				
		Polar co-				
		ordinates.				
		Partial				
		derivatives,				
		Total				
		derivative,				
		uui vu,				

		Euler's Theorem for homogeneous functions Taylor and Maclaurin's theorems for a				
Unit 3	Differential Calculus -II	function of one and two variables, Jacobians, Approximatio n of errors. Maxima and Minima of functions of several variables, Lagrange Method of Multipliers.	Classroom,PP T, M.Tutor, Smart Board	8	3.1, 3.2, 3.3	CO3
Unit 4	Multivariab le Calculus	Multiple integration: Double integral, Triple integral, Change of order of integration, Change of variables, Application: Areas and volumes, Beta & Gama function and their properties, Dirichlet's integral and	Classroom,PP T, M.Tutor, Smart Board	10	4.1, 4.2, 4.3	CO4

		applications. Simplification , Percentage, Profit, loss &	Classroom,PP			
Unit 5	Aptitude-I	discount, Average, Number & Series, Coding & decoding, Algebra.	T, M.Tutor, Smart Board	8	5.1, 5.2, 5.3, 5.4	CO5

References-

Text Books:

- **1.** B. V. Ramana, Higher Engineering Mathematics, Tata Mc Grew-Hill Publishing Company Ltd.
- **2.** B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.
- **3.** R K. Jain & S R K. Iyenger, Advance Engineering Mathematics, Narosa Publishing House.

Reference Books:

- **1.** E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons.
- **2.** Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.
- **3.** Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition, Pearson.
- **4.** D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole.
- 5. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- **6.** Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, Tata Mc-Grew-Hill; Sixth Edition.
- P. Siva Ramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd
- **8.** Advanced Engineering Mathematics. Chandrika Prasad, Reena Garg.

9. Engineering Mathematics – I. Reena Garg.

10. Quantitative Aptitude by R.S. Agrawal.

Links:

Unit 1: https://www.youtube.com/watch?v=kcL5WWJjmIU

https://www.youtube.com/watch?v=VTHz4gjzsKI

https://youtu.be/56dEt9EOZ_M

https://www.youtube.com/watch?v=njDiwB43w80

https://www.youtube.com/watch?v=N33SOw1A5fo

https://www.youtube.com/watch?v=yLi8RxqfowA

www.math.ku.edu/~lerner/LAnotes/Chapter5.pdf

http://www.math.hawaii.edu/~lee/linear/sys-eq.pdf

https://youtu.be/41Y38WjHbtE

https://www.youtube.com/watch?v=4jcvZmMK_28

https://www.youtube.com/watch?v=G4N8vJpf7hM

https://www.youtube.com/watch?v=r5dIXpssvrA

https://youtu.be/ZX5YnDMzwbs

http://web.mit.edu/2.151/www/Handouts/CayleyHamilton.pdf

https://www.youtube.com/watch?v=iKQESPLDnnI

https://math.okstate.edu/people/binegar/3013-S99/3013-I16.pdf

Unit 2: <u>https://www.youtube.com/watch?v=tQxk5IX9S_8&list=PLbu_fGT0MPstS3DTIyqkUecSW_7axdxKe</u>

https://www.youtube.com/watch?v=U5sGFf0DjLs&t=34s

https://www.youtube.com/watch?v=TCPPvRfHtXw

https://www.youtube.com/watch?v=PkuPGKSacu0&list=PL2FUpm_Ld1Q3H00wVFuwjWOo1gtMXk1eb

https://www.youtube.com/watch?v=QeWrQ9Fz3Wo&t=22s

https://www.youtube.com/watch?v=5dFrWCE6bHg

https://www.youtube.com/watch?v=WX6O9TiFYsA&t=110s

https://www.youtube.com/watch?v=GII1ssdR2cg&list=PLhSp9OSVmeyK2yt8hdoo3Qze3O0Y67qaY

Unit 3: https://www.youtube.com/watch?v=6tQTRlbkbc8

https://www.youtube.com/watch?v=McT-UsFx1Es

https://www.youtube.com/watch?v= 1TNtFqiFQo

https://www.youtube.com/watch?v=X6kp2o3mGtA

https://www.youtube.com/watch?v=btLWNJdHzSQ

https://www.youtube.com/watch?v=jiEaKYI0ATY

https://www.youtube.com/watch?v=r6lDwJZmfGA

https://www.youtube.com/watch?v=Jk9xMY4mPH8

https://www.youtube.com/watch?v=fqq_UR4zhfI

https://www.youtube.com/watch?v=G0V_yp0jz5c

https://www.youtube.com/watch?v=9-tir2V3vYY

https://www.youtube.com/watch?v=jGwA4hknYp4

Unit 4: <u>https://www.youtube.com/watch?v=3BbrC9JcjOU https://www.youtube.com/watch?v=-DduB46CoZY</u>

https://www.youtube.com/watch?v=VvKAuFBJLs0

https://www.youtube.com/watch?v=4rc3w1sGoNU

https://www.youtube.com/watch?v=X6kp2o3mGtA&t=1003s

https://www.youtube.com/watch?v=wtY5fx6VMGQ&t=1151s

https://www.youtube.com/watch?v=-I3HUeHi1Ys&t=1933s

https://www.youtube.com/watch?v=kfv9h3c46CI

https://www.youtube.com/watch?v=9_m36W3cK74

https://www.youtube.com/watch?v=HQM7XMd5QQo

- https://www.GovernmentAdda.com

Unit 5: <u>https://www.GovernmentAdda.com</u>

B. Tech First Semester	
Branch- CSE/CSE-	
R/CS/CYS/IT/CSE(AI)/CSE(IOT)/CSE(DS)/CSE(AIM	L)/M. Tech. Integrated
Subject Code-BASH0101A	L - T - P
	3 – 1- 0
Subject Name- ENGINEERING PHYSICS	No. of hours-40
Course Objective-	
1. To provide the knowledge of Relativistic Mechanics and their uses to en	ngineering applications.
2. To provide the knowledge of Quantum Mechanics and to explore possib	ble engineering utilization.
3. To provide the knowledge of interference and diffraction.	
4. To provide the knowledge of the phenomenon of semiconductors and its applications.	s uses to engineering
5. To provide the basic knowledge of Optical Fiber and Laser which is nec working of modern engineering tools and techniques.	essary to understand the
Course Outcome – After completion of this course students will	l be able to:
CO1 - Solve the relativistic mechanics problems.	
CO2- Apply the concept of quantum mechanics.	
CO3- Apply the laws of optics and their application in various processes.	
CO4- Define the laws of semiconductors.	

CO5- Explain the working of modern engineering tools and techniques of optical fiber and laser.

Course Content									
Uni t	Module	Topics Covered	Pedago gy	Lecture Requir ed (T=L+P)	Aligned Practical/Assignment /Lab	CO Mappi ng			
Unit 1	Relativistic Mechanics	Frame of reference, Inertial & non- inertial frames, Galilean transformations, Michelson Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Velocity addition theorem, Variation of mass with velocity, Einstein's mass energy relation, Relativistic relation between energy and momentum, Massless particle. Some engineering applications(qualitat ive): Global positioning system (GPS), Application to Satellites.	Smartboa rd, PPT	8	Assignment 1.1,1.2,1.3	C01			
Unit 2	Quantum Mechanics	Introduction to wave-particle duality, de Broglie	Smartboa rd, PPT	8	Assignment 2.1, 2.2, 2.3/Exp. 7,5, 19	CO2			

		matter waves, Phase and group velocities, Heisenberg's uncertainty principle and its applications, Wave function characteristics and significance, Time- dependent and time- independent Schrödinger's wave equations, Particle in one-dimensional rigid box, Theory of Quantum excitation of the Higgs field (Higgs Boson or GOD particle)(qualitative)				
Unit 3	Wave Optics	Coherent sources, Interference in uniform and wedge shaped thin films, Necessity of extended sources, Newton's Rings and its applications, Fraunhofer diffraction at single slit and at double slit, absent spectra, Diffraction grating, grating spectra, Rayleigh's criterion of resolution, Resolving power of grating, Optical filters.	Smartboa rd, PPT	10	Assignment 3.1, 3.2/Exp.1,2,4	CO3

Unit 4	Semiconduc tor Physics and Information Storage	 (a) Introduction to the concept of electrical conductivity, conductivity of conductors and semiconductors, Fermi-Dirac probability distribution function, Position of Fermi level in intrinsic semiconductors and extrinsic semiconductors, variation of Fermi level with temperature (qualitative), Photovoltaic effect, working of a solar cell on the basis of band diagrams and Applications. (b) Basics of magnetic, and semiconductor memories 	Smartboa rd, PPT	6	Assignment 4.1, 4.2/Exp.5, 8, 9, 11, 12, 20, 22	CO4
Unit 5	Fiber Optics & Laser	Fiber Optics: Introduction to fiber optics, Acceptance angle, Numerical aperture, Normalized frequency, Classification of fiber, Attenuation and Dispersion in optical fibers.	Smartboa rd, PPT	8	Assignment 5.1, 5.2/ Exp.16, 17, 18	CO5

Laser: Ab	sorption of		
radiation,	-		
Spontaneo	us and		
stimulated	emission		
of	radiation,		
Einstein's			
coefficient	ts,		
Population	1		
inversion,	Ruby		
Laser, He-	Ne Laser.		
	oplications		
of optical	fibers and		
Laser(Qua	litative):		
Laser-guid	led UAV		
(Drone).			

References-

Text Books:

- **1.** A. Beiser, Concepts of Modern Physics (McGraw Hill)
- **2.** Brijlal & Subramanian, Optics (S. Chand)
- **3.** Neeraj Mehta, Applied Physics for Engineers (PHI Learning, New)

Reference Books:

- **1.** Robert Resnick, Introduction to Special Theory of Relativity (Wiley)
- **2.** Katiyar and Pandey, Engineering Physics: Theory and Practical (Wiley India)
- **3.** H. K. Malik and A. K. Singh, Engineering Physics- (McGrawHill)
- **4.** J.W. Jewett , Jr. and R. A. Serway , Physics for Scientists and Engineers with Modern Physics,7th Edn. (CENGAGE Learning)
- 5. C. Kittel , Solid State Physics,7th Edn. (Wiley Eastern)
- 6. V. Raghavan, Materials Science and Engineering (Prentice Hall, India)

- 7. S.O. Pillai , Solid State Physics,5th Edn (New Age International)
- 8. R. Booker and E. Boysen , Nanotechnology (Wiley Publ.)
- **9.** K.Rajagopal, Engineering Physics, 2nd Edn. (PHI Learning)
- **10.** G. Aruldhas , Engineering Physics (PHI Learning)
- **11.** S.D. Jain and G.S. Sahasrabudhe , Engineering Physics (Universities Press)
- **12.** L. F. Bates, Modern Magnetism, (Cambridge Univ. Press)
- **13.** F.T.S.Yu , X.-Y.Yang, Introduction to Optical Engineering (Cambridge Univ.Press)

14. G.Keiser, Optical Communications Essentials (Tata McGrawHill)

Links:

UNIT1: <u>https://www.youtube.com/watch?v=lzBKIY4f1XA&list=PL10WTjZXSIIHKMnU4UCxpPsH-yAf_n1O6&index=11</u>

UNIT2: http://nptel.ac.in/ , http://www.mit.edu/

UNIT3: <u>https://www.youtube.com/watch?v=bWTxf5dSUBE</u>, <u>http://ocw.mit.edu/</u>, <u>http://nptel.ac.in/</u>

UNIT4: https://www.youtube.com/watch?v=6vyYRnLvnqI

UNIT5:

https://www.youtube.com/watch?v=0GD-18Jqnro,

https://www.youtube.com/watch?v=dQhhcgn8YZo

B. Tech. – First Semester

Branch – CS/CSE/ CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI) /ME/M. Tech (Int)/BT

hours- 24 + 48 = 72 Course Objectives: • To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). • To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). • To initroduce the key concepts of ethics, etiquette, and life skills. • To introduce the key concepts of ethics, etiquette, and life skills. • To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 – Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. C03 - Demonstrate improved versions of themselves. C04 – Acquire the concepts to cope better at the workplace. C05 – Participate in the placement process with confidence.	Subject Code-BASLH0101	L - T -
Subject Name- Acquiring Business Communication (ABC) No. of hours-24 + 48 = 72 Course Objectives: • To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). • To impart business communication skills. • To introduce the key concepts of thics, etiquette, and life skills. • To train for enhanced career prospects. • To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 - Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. • C04 - Acquire the concepts to cope better at the workplace. C03 - Participate in the placement process with confidence. • C04 - Arcquire the placement process with confidence.		Ρ
Subject Name- Acquiring Business Communication (ABC) No. of hours-24 + 48 = 72 Course Objectives: • To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). • To impart business communication skills. • To introduce the key concepts of thics, etiquette, and life skills. • To train for enhanced career prospects. • To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 - Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. • C04 - Acquire the concepts to cope better at the workplace. C03 - Participate in the placement process with confidence. • C04 - Arcquire the placement process with confidence.		2 0
Subject Name- Acquiring Business Communication (ABC) No. of hours-24 + 48 = 72 Course Objectives: • To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). • To impart business communication skills. • To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). • To impart business communication skills. • To introduce the key concepts of ethics, etiquette, and life skills. • To train for enhanced career prospects. • To train for enhanced career prospects. Course Outcomes: • After the completion of the course, the students will be able to C01 – Improve proficiency in English to the next level of CEFR. • C02 - Develop business communication skills. C03 - Demonstrate improved versions of themselves. • C04 - Acquire the concepts to cope better at the workplace. C05 - Participate in the placement process with confidence. • C05 - Participate in the placement process with confidence.		
hours- 24 + 48 = 72 Course Objectives: • To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). • To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). • To initroduce the key concepts of ethics, etiquette, and life skills. • To introduce the key concepts of ethics, etiquette, and life skills. • To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 – Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. C03 - Demonstrate improved versions of themselves. C04 – Acquire the concepts to cope better at the workplace. C05 – Participate in the placement process with confidence.		0
 24 + 48 = 72 Course Objectives: To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). To inpart business communication skills. To motivate students to look within and create a better version of 'self.' To initroduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 - Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. C03 - Demonstrate improved versions of themselves. C04 - Acquire the concepts to cope better at the workplace. C05 - Participate in the placement process with confidence.	Subject Name- Acquiring Business Communication (ABC)	No. of
 48 = 72 Course Objectives: To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). To impart business communication skills. To motivate students to look within and create a better version of 'self.' To initroduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 – Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. C03 - Demonstrate improved versions of themselves. C04 – Acquire the concepts to cope better at the workplace. C05 – Participate in the placement process with confidence.		hours-
 72 Course Objectives: To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). To impart business communication skills. To notivate students to look within and create a better version of 'self.' To introduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 - Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. C03 - Demonstrate improved versions of themselves. C04 - Acquire the concepts to cope better at the workplace. C05 - Participate in the placement process with confidence. 		24 +
 Course Objectives: To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). To impart business communication skills. To motivate students to look within and create a better version of 'self.' To introduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 – Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. C03 - Demonstrate improved versions of themselves. C04 – Acquire the concepts to cope better at the workplace. C05 – Participate in the placement process with confidence.		48 =
 To improve proficiency in the English language to the Intermediate level (B1/B2) of CEFR (Common European Framework of Languages). To impart business communication skills. To motivate students to look within and create a better version of 'self.' To introduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to C01 – Improve proficiency in English to the next level of CEFR. C02 - Develop business communication skills. C03 - Demonstrate improved versions of themselves. C04 – Acquire the concepts to cope better at the workplace. C05 – Participate in the placement process with confidence.		72
 (Common European Framework of Languages). To impart business communication skills. To motivate students to look within and create a better version of 'self.' To introduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to CO1 – Improve proficiency in English to the next level of CEFR. CO2 - Develop business communication skills. CO3 - Develop business communication skills. CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence.	Course Objectives:	
 (Common European Framework of Languages). To impart business communication skills. To motivate students to look within and create a better version of 'self.' To introduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to CO1 – Improve proficiency in English to the next level of CEFR. CO2 - Develop business communication skills. CO3 - Develop business communication skills. CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence.		
 (Common European Framework of Languages). To impart business communication skills. To motivate students to look within and create a better version of 'self.' To introduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to CO1 – Improve proficiency in English to the next level of CEFR. CO2 - Develop business communication skills. CO3 - Develop business communication skills. CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence.		
 To introduce the key concepts of ethics, etiquette, and life skills. To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to CO1 – Improve proficiency in English to the next level of CEFR. CO2 - Develop business communication skills. CO3 - Demonstrate improved versions of themselves. CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence.	(Common European Framework of Languages).To impart business communication skills.	FR
To train for enhanced career prospects. Course Outcomes: After the completion of the course, the students will be able to CO1 – Improve proficiency in English to the next level of CEFR. CO2 - Develop business communication skills. CO3 - Demonstrate improved versions of themselves. CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence.		
 After the completion of the course, the students will be able to CO1 – Improve proficiency in English to the next level of CEFR. CO2 - Develop business communication skills. CO3 - Demonstrate improved versions of themselves. CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence. 		
 CO1 – Improve proficiency in English to the next level of CEFR. CO2 - Develop business communication skills. CO3 - Demonstrate improved versions of themselves. CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence. 	Course Outcomes:	
 CO2 - Develop business communication skills. CO3 - Demonstrate improved versions of themselves. CO4 - Acquire the concepts to cope better at the workplace. CO5 - Participate in the placement process with confidence. 	After the completion of the course, the students will be able to	
 CO3 - Demonstrate improved versions of themselves. CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence. 	CO1 – Improve proficiency in English to the next level of CEFR.	
CO4 – Acquire the concepts to cope better at the workplace. CO5 – Participate in the placement process with confidence.	CO2 - Develop business communication skills.	
CO5 – Participate in the placement process with confidence.	CO3 - Demonstrate improved versions of themselves.	
	CO4 – Acquire the concepts to cope better at the workplace.	
Course Content	CO5 – Participate in the placement process with confidence.	
Course Content		
	Course Content	

Module	Topics Covered	Pedagogy	Lecture Requir ed (T=L+P)	Aligned Practical/Assignmen t/Lab	CO Mappin g
l - Reading with Cognitive Skills	Importance of communicating in English Overview of ABC Objective: To motivate the students to acquire the skill of communicating well. Outcome: The students realize the importance and understand the course and what is expected of them.	Video Clips of famous personalities who have learnt to communicate well e.g., Kapil Dev, Jahnvi Panwar, APJ Abdul Kalam, etc.	1	Assignment 1: Story Review (PDF of short stories to be shared to encourage reading habits)	CO1
	 Basics of Workplace Communication Process Barriers Objective: To facilitate the student's ability to identify and analyse aspects of miscommunication in real-life situations. Outcome: The students can identify impediments to effective communication and learn to overcome those. 	Video streaming followed by Discussions and problem-solving activities.	1	Humorous video clips on miscommunication - Students will analyse the video clips for a deeper understanding of the nuances of effective and ineffective communication.	CO2
	ReadingComprehensionObjective: To fosterstudents' readingcomprehension skills by	Students will actively interact with the reading material by engaging in this activity, collaborating	1	Think-Pair-Share for Reading Comprehension (academic texts, Journals, research papers, general interest)	CO1

ם נ נ ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו ו	engaging them in activities that involve comprehending texts - understanding instructions, filling forms, interpreting professional contents. Outcome: The students will become adept at navigating diverse texts, understanding, and following directions, and accurately filling out official forms.	with their peers, and refining their comprehension skills. The think- pair-share approach fosters critical thinking, oral communication, and the ability to construct meaning from written texts.			
	Reading Techniques for Time Management Objective: To develop students' ability to quickly locate relevant information in texts. Outcome: Students will learn to read and comprehend faster.	a variety of texts and focus on identifying keywords, headings, and topic sentences. Also, to analyze and synthesize information from a selected text and use it for tasks such as paraphrasing, note making, chart and table representation.	1	Activity 1: Skim and Scan Race Activity 2: Speed Reading Challenge Activity 3: Information Gap Activity	CO4
	Online Assessment: Apply the various reading techniques to extract information from a given text.	Online Assessment	1		

	Critical Reading Objective: To promote critical thinking and engage students in thoughtful discussions about a selected reading material. Outcome: The students will develop skills in identifying key arguments, evaluating evidence, and challenging assumptions.	Group discussion on selected material.	1	Critical Reading Discussion Circle – On short stories, movies, reviews.	CO3
	Hansei Session Objective: To develop students' cognitive skills and critical thinking. through a Outcome: The students will develop self- awareness, metacognition, and a growth mindset, empowering students to become more effective and efficient readers.	The students will be able to reflect on their reading experiences, evaluate their cognitive skills employed during the process, and identify strategies for improving their comprehension.	1	Hansei activity focused on reading comprehension.	CO4
II – Business Writing	Vocabulary Building Objective: To expand participants' vocabulary and deepen their understanding of word formation. Outcome: Students will develop business vocabulary and effectively communicate in various professional settings.	Introduction to the General Service List of Words by Michael West, to familiarize students with word formation concepts in the context of business communication, enhancing their ability to understand and create a specialized	1	Activity 1: Word Association Activity 2: Vocabulary Charades Activity 3: Word Formation Relay using prefixes and suffixes. Activity 4: Root Word Finder	CO2

	vocabulary effective profession interaction Studying a	nal ns.		
Language T Objective: T language pro- the students them bring i their usage of Outcome: T will become with good w vocabulary a linguistic ve	oolbox oolbox oolbox oolbox oolbox oone-word substitutic homophor homonym synonyms, antonyms. Students v develop a deeper understan these lang tools and	ons, nes, hes, and vill 2 ding of uage heir cate r in	Activity 1: Homophone Pictionary Activity 2: Synonym and Antonym Match-Up Activity 3: One-Word Substitution Brainstorm Activity 4: Abbreviation Scavenger Hunt Class Assignment: To fill in or identify the corporate terms, cliches and technical terminology in the assigned text.	CO2
Sentence Co Objective: T students kno correct sente construction techniques. Outcome: The student to use effect well-formed	o help the bow the rules and s will be able ive and activities, thereby enhancing the requisi	e in the 2 their ding of ites of	Activity 1: Sculpting a good Sentence. Activity 2: Sentence Construction Masterclass Activity 3: Framing a story using jumbled sentences. Activity 4: Analysing famous dialogues from movies or novels.	CO1
Paragraph writing Objective: ' students und fundamenta organizatior paragraph.	lerstand the activity wh	e in a ng nerein 2	Writing a blog through Visual and verbal prompts.	CO1

	be able to compose effective paragraphs and express their views and opinions in an organized, and logical manner.	based on visual and verbal prompts. Through the activity the students will be familiarised with the important aspects of paragraph writing like unity, coherence, clarity, etc. The module includes guided practice sessions, role- plays and			
III - Mastering the art of listening and Speaking (Professiona I & Empathetic Listening)	Art of Listening Objective: To practice active listening, empathy, and effective communication. Outcome: Participants will engage in focused listening and learn to comprehend and respond.	plays, and simulations to develop active listening skills and empathy. Reflection and discussion sessions encourage self- awareness and strategy exploration. Instructors provide personalized feedback to refine participants' listening abilities.	1	Activity 1: Listening exercises. Activity 2: Listening to various suggested podcasts. Class Assignment: Task- based listening exercise	CO1
	Phonetic Understanding Objective: To develop participants' ability to	It aims to develop participants' ability to enunciate	1	Activity1: Pronunciation exercises in English	CO1

enunciate ea clearly in Sta Indian Englis Accent). Outcome: P will improve auditory per skills and de heightened of the subtle distinctions English.	andard sh (Neutral articipants e their rception awareness e sound in Standard Standard Indian English. It includes focused practice on sound production, auditory perception training, and increasing awareness of sound distinctions in Standard English This pedagogy enhances participants' communication clarity and comprehension in English.	common English words pronounced differently in different regions of the world.	
recognize an correct into modulation, and accent. Outcome: P	The pedagogy focuses on understand, nd practice nation, voice tone, pitch, articipants their ability ate nilar sounds their on accuracy The pedagogy focuses on understanding, recognizing, and practicing correct intonation, voice modulation, tone, pitch, and accent. Through interactive activities and targeted exercises, participants develop a keen awareness of	1 Activity 2: Listen to the suggested list of podcast ted talks. 1 Activity 3: Practicing correct pronunciation o commonly mispronounce words.	s/ CO3 f

	The outcome is improved differentiation between similar sounds and enhanced pronunciation accuracy in Standard English words.			
Art of Public SpeakingObjective: To help students speak with confidence in public, using various verbal and non-verbal aspects of speech.Outcome: Students will gain awareness of speaking in a professional environment and enhance their overall communication in English.	Through interactive exercises and practical application, students gain awareness of professional speaking and improve their overall English communication abilities, leading to enhanced public speaking proficiency.	1	Activity 1: Delivering extempore speeches on familiar topics Activity 2: JAM sessions	CO2
Facing an InterviewObjective: To developthe ability to face aninterview.Outcome: Students willbe able to speak in aprofessionalenvironment andanswer the basic	It focuses on providing students with practical guidance and training in interview skills through interactive exercises, mock interviews, and	1	Activity 1: Speaking tests. Activity 2: Mock Interview Sessions	CO5

	questions of any	feedback			
	interview confidently.	sessions.			
	Hannai Canaian				
	Hansei Session				
	Objective: To foster				
	self-reflection and				
	continuous growth in professional and				
	empathetic listening				
	and speaking skills				
	through a Hansei				
	activity.				
	Outcome: By engaging				
	in the Hansei activity,				
	participants will reflect				
	on their experiences			Hancai Activity: Croate a	
	with professional and			Hansei Activity: Create a video on a topic that will	
	empathetic listening and speaking, identify			interest college students	
	areas of strength and	Reflecting on	1	incorporating the nuances	CO4
	areas for improvement,	their experiences	-	of speaking that you have	
	and develop strategies			learned.	
	to enhance their skills.				
	This activity promotes self-awareness, active				
	listening, effective				
	communication, and				
	empathy, empowering				
	participants to build				
	stronger relationships,				
	enhance their				
	professional interactions, and				
	become more impactful				
	communicators in				
	various settings.				
IV - Refining		The teaching			
the Triad:	Leadership role play:	pedagogy for the	1	Activity1: Role-play activity	CO 3
(Ethical,	Objective: Recognize	Leadership Role	1	(Hansei) Activity 2: Take	05
Empathetica	the values that	Play session		the colored paper and	

I Leadership & Synergy)	leaders/celebrities demonstrate. Outcome : Students will get motivated to look within and create a better version of themselves.	involves interactive role- playing activities where students portray leaders or celebrities and demonstrate their values and qualities.		 write about the value that is closest to your heart and how you will demonstrate a leader in your life. Online Assessment: Links to videos of some famous leaders and celebrity interviews will be shared. Taking inspiration from them students will work in pairs and will enact and record their interview videos.	
	Etiquette & Ethics: Objective: Students will recognize the key features of corporate etiquette Outcome: Students will be able to learn and imbibe corporate etiquette in real situations.	The teaching pedagogy for the Etiquette & Ethics module involves interactive discussions, case studies, and role- playing exercises to help students recognize key features of corporate etiquette.	1	Activity 1: Videos on corporate etiquette and recognizing the key features. Online Assessment: Hansei Activity - Take an interview of various working-class people.	CO4
	Emotional Intelligence in real-life workplace scenarios Objective: To make students identify and be aware of emotions by introducing the concepts of values and life skills Outcome: Students will be able to harness the	It involves experiential learning through discussions, case studies, and interactive exercises to help students identify and be aware of their emotions.	1	Activity 1: Think- Pair- Share activities using various emojis and emotions in different situations. Activity 2: To show NDTV's Coverage on the lead actress of "SECRET SUPERSTAR" Zaira Wasim and her battle with Anxiety and Depression.	CO4

emotions and apply it to thinking and problem solving: Manage and regulate emotions.Hansei ActivityObjective: To promote self-reflection and continuous growth in ethical leadership,			Activity: Hansei (Self-	
empathetic leadership, and creating synergy through a Hansei activity. Outcome: By engaging in the Hansei activity, participants will reflect on their experiences with ethical and empathetic leadership and creating synergy within teams or organizations.	Self - reflection	1	Reflection) Understanding themselves better in terms of Emotional Intelligence by Quick-Self Check (Situation based activity).	CO4

Course Book – There are no course books. Hand-outs and materials will be prepared by the teachers, who will have an instructional manual to help them.

Reference Books:

1. Cambridge English Business Benchmark (Pre-intermediate to Intermediate), 2nd edition, Norman Whitby, Cambridge University Press, 2006, UK.

2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi.

3. Technical Communication – Principles and Practices by Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi.

4. Talbot, Fiona. Improve Your Global Business English Kogan Page, 2012.

5. Leech Geoffery. Communicative Grammar of English. Pearson Education Harlow, United Kingdom, 1994.

6. Sethi. J. A Course in Phonetics and Spoken English Prentice Hall India Learning Private Limited; second edition (1999)

7. Anderson, Paul V. Technical communication. 8th ed. Cengage Learning, 2011.

8. IELTS 11: General Training with answers. Cambridge English

Links:

Online reference e books and other reference materials:

- 1. http://promeng.eu/downloads/training-materials/ebooks/soft-skills/effective-communication-skills.pdf
- 2. http://ncert.nic.in/textbook/pdf/iees101.pdf
- **3.** http://www.infocobuild.com/education/audio-video-courses/literature/CommunicationSkills-IIT-Kanpur/lecture-09.html

Online Resources:

- 4. <u>https://www.youtube.com/watch?v=JIKU_WT0Bls</u>
- 5. https://www.youtube.com/watch?v=6Ql5mQdxeWk
- 6. <u>https://www.youtube.com/watch?v=fE_cS75Lcvc</u>

(MTUTOR LINK):

- 7. <u>https://www.m-tutor.com/courses-</u> <u>detail.php?tid=859133&topicid=198404&viewtype=&searchtopics=&selectedcourse=396&selectedsubjec</u> <u>t=5710&selectedunit=&filter=landing</u>
- <u>https://www.m-tutor.com/courses-</u> <u>detail.php?tid=858987&topicid=198291&viewtype=&searchtopics=&selectedcourse=396&selectedsubje</u> <u>ct=5710&selectedunit=&filter=landing</u>
- 9. <u>https://www.m-tutor.com/courses-</u> <u>detail.php?tid=858472&topicid=197673&viewtype=&searchtopics=&selectedcourse=396&selectedsubjec</u> <u>t=5710&selectedunit=&filter=landing</u>
- 10. <u>https://www.m-tutor.com/courses-</u> detail.php?tid=858967&topicid=198195&viewtype=&searchtopics=&selectedcourse=396&selectedsubjec t=5710&selectedunit=&filter=landing

Free Apps to Practice English:

- 1. Memrise https://www.memrise.com
- 2. Open Language https://open-language.en.uptodown.com
- 3. Duolingo https://englishtest.duolingo.com/applicants
- 4. Rosetta Stone <u>https://www.rosettastone.com/product/mobile-apps/</u>
- 5. FluentU <u>https://www.rosettastone.com/product/mobile-apps/</u>

B. Tech.-First Semester

Branch - CS/CSE/ CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI) /ME/M. Tech (Int.)/BT

Subject Code-BCSEH0103	L - T - P
	2 – 1 - 0
Subject Name- Design Thinking- I	No. of hours-40

Course Objective- The objective of this course is to familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for real-time problems.

Course Outcome – After completion of this course students will be able to:

CO1 - Develop a strong understanding of the design process and apply it in a variety of business settings

CO2-Analyze self, culture, teamwork to work in a multidisciplinary environment and exhibit empathetic behaviour

CO3- Formulate specific problem statements of real time issues and generate innovative ideas using design tools

CO4- Apply critical thinking skills in order to arrive at the root cause from a set of likely causes

CO5- Demonstrate an enhanced ability to apply design thinking skills for evaluation of claims and arguments

Course Content

Uni t	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assignment/ Lab	CO Mappi ng
Uni t 1	Introduction	An overview of future skills, introduction		10	Practical Approach (Discussion and Activities),	

		I		
	to design		Workshop at School of	
	thinking,		Future Skills	
	traditional		Activity related to	
	problem		Activity related to observation & team	
	solving			
	versus	Smartboard/PPT/T	building exercise	CO 1
	design	ext		
	thinking,	book/Reference		
	history of	book		
	design			
	thinking,			
	wicked			
	problems.			
	Innovation			
	and			
	creativity,			
	the role of			
	innovation			
	and			
	creativity in			
	organization			
	s, creativity			
	in teams and			
	their			
	environment			
	s, design			
	mindset.			
	Introduction			
	to elements			
	and			
	principles of			
	design, 13			
	Musical			
	Notes for			
	Design			
	Mindset,			
	Examples of			
	Great			
	Design,			
	Design			
	Approaches			
	across the			
	world.			

Uni t 2	Ethical Values and Empathy	Understandi ng humans as a combination of I (self) and body, basic physical needs up to actualization , prosperity, the gap between desires and actualization Understandi ng culture in family, society, institution, startup, socialization process. Ethical behaviour: effects on self, society, understandin g core values and feelings, negative sentiments and how to overcome them, definite human goal,	Smartboard/PPT/T ext book/Reference book	8	Practical Approach (Discussion and Activities)/ Assignment Activity related to Empathy Map and Journey Mapping	CO 2
------------	----------------------------------	---	---	---	---	------

L		
	developing	
	human	
	consciousne	
	ss in values,	
	policy,	
	and	
	character.	
	Understand	
	stakeholders	
	, techniques	
	to	
	empathize,	
	identify key	
	user	
	problems.	
	Empathy	
	tools-	
	Interviews,	
	empathy	
	maps,	
	emotional	
	mapping,	
	immersion	
	and	
	observations	
	, Emotional	
	Intelligence,	
	customer	
	journey	
	maps,	
	classifying	
	insights after	
	Observation	
	S,	
	Classifying	
	Stakeholders	
	, Individual	
	activity-	
	'Moccasin	
	walk'	

Uni t 3	Problem Statement and Ideation	Defining the problem statement, creating personas, Point of View (POV) statements. Research identifying drivers, information gathering, target groups, samples, and feedbacks. Idea Generation basic design directions, Themes of Thinking, inspirations and references, brainstormin g, inclusion, sketching and references, brainstormin g, inclusion, sketching and presenting ideas, idea evaluation, double diamond approach, analyze — four W's, 5 why's, "How Might We", Defining the	ext book/Reference book	8	Practical Approach (Discussion and Activities)/ Assignment Activity related to Brainstorming and Six Thinking Hats	CO 3
------------	--------------------------------------	--	-------------------------------	---	---	------

	problem using Ice-				
	Cream				
	Sticks,				
	Metaphor &				
	Random				
	Association Technique, Mind-Map,				
	ideation				
	activity games - six				
	thinking				
	hats,				
	million-				
	dollar idea,				
	introduction				
	to visual				
	collaboratio				
	n and				
	brainstormin				
	g tools -				
	Mural,				
	JamBoard.				
	Fundamental concepts of	Smartboard/PPT/T ext			
	critical	book/Reference			
	thinking, the	book			
	difference				
	between			Practical Approach	
	critical and				
Uni	ordinary			(Discussion and	
t 4	thinking,		6	Activities)/Assignment	
	characteristi			Activity related to	
	cs of critical			identifying Biases	
	thinkers,				
	critical				
	thinking				
	skills-				
	linking				
	ideas,				

	Critical	structuring				CO 4
	Thinking	arguments,				
	Thinking	recognizing incongruenc es, five pillars of critical thinking, argumentati on versus rhetoric, cognitive bias, tribalism, and politics. Case study on applying critical thinking on different scenarios.				
Uni t 5	Logic and Argumentati on	The argument, claim, and statement, identifying premises and conclusion, truth and logic conditions, valid/invalid arguments, strong/weak arguments, deductive argument, argument diagrams, logical	Smartboard/PPT/T ext book/Reference book	8	Practical Approach (Discussion and Activities)/Assignment	CO 5

reasoning,
scientific
reasoning,
logical
fallacies,
propositiona
1 logic,
probability,
and
judgment,
obstacles to
critical
thinking.
Group
activity/role
plays on
evaluating
arguments.

References-

Text Books:

1. Arun Jain, UnMukt : Science & Art of Design Thinking, 2020, Polaris

2. Jeanne Liedta, Andrew King and Kevin Benett, Solving Problems with Design Thinking – Ten Stories of What Works,2013,Columbia Business School Publishing

3. RR Gaur, R Sangal, G P Bagaria, A Foundation Course in Human Values and Professional

Ethics, First Edition, 2009, Excel Books: New Delhi

Reference Books:

1. Vijay Kumar, 101 Design Methods: A Structured Approach for Driving Innovation in Your Organization, 2013, John Wiley and Sons Inc, New Jersey

2. Mootee, I. (2013). Design thinking for strategic innovation: What they can't teach you at business or design school. John Wiley & Sons.

3. Gavin Ambrose and Paul Harris, Basics Design 08: Design Thinking, 2010, AVA Publishing SA

4. Roger L. Martin, Design of Business: Why Design Thinking is the Next Competitive Advantage, 2009, Harvard Business Press, Boston MA

Links:

Unit I

https://nptel.ac.in/courses/110/106/110106124/

https://nptel.ac.in/courses/109/104/109104109/

https://designthinking.ideo.com/

https://blog.hypeinnovation.com/an-introduction-to-design-thinking-for-innovation-managers

https://www.creativityatwork.com/design-thinking-strategy-for-innovation/

https://www.youtube.com/watch?v=GFffb2H-gK0

Unit II

https://aktu.ac.in/hvpe/

http://aktu.uhv.org.in/

https://nptel.ac.in/courses/110/106/110106124/

https://swayam.gov.in/nd1_noc19_mg60/preview

Unit III

https://nptel.ac.in/courses/110/106/110106124/

https://swayam.gov.in/nd1_noc19_mg60/preview

https://www.udemy.com/course/design-thinking-for-beginners/

https://www.designthinking-methods.com/en/

https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them

Unit IV

https://www.forbes.com/sites/sap/2016/08/25/innovation-with-design-thinking-demands-criticalthinking/#340511486908

https://www.criticalthinking.org/pages/defining-critical-thinking/766

Unit V

https://www.udemy.com/course/critical-thinker-academy/

List of Suggested projects: An indicative list of projects where you will have to be actively engaged in field work to interact with stakeholders & apply Design Tools, such as –

Institutional Projects

- 1. Improving canteen experience
- 2. Improving library usage by students
- 3. Facilitating interaction between students of diverse ethnic backgrounds
- 4. Making college campus plastic-free
- 5. Segregating different kind of domestic waste
- 6. Adopting to plastic-ban
- 7. How can we improve classroom experience of students?
- 8. How can we ensure better communication with our institution alumni?

Or

Social Projects

- 9. How can we ensure that clean drinking water is handled properly?
- 10. How might we feed everybody in the world?
- 11. How can we solve voters' dissatisfaction by changing the voting system?
- 12. How can we help the school drop-outs to continue the study?
- 13. How to solve issue of waste management?
- 14. How can we solve issue of insensitivity of peoples towards street animals?
- 15. How to solve the issue of gender inequality in society / college / schools?
- 16. How can we improve College Experiences and helping teachers?
- 17. How can we ensure secured financial transactions and minimize scams?
- 18. Facilitating Water Conservation in domestic households
- 19. Making the elderly adapt to mobiles/smartphones.
- 20. Use design thinking to use empty lot's in our neighbourhood.

Or

A project on the theme: teens, human rights, water, privacy, violence, equity, immigration, change with growth, food waste and robotics.

Or

Industrial Projects

21. Windsor Airline's consistent flight delays are hurting the company's bottom line. How might we ensure that Windsor Airlines flights leave on time.

22. Being part of an ever-connected society, many people in the Global North can barely fathom that still more than 1.5 billion people live off the grid. Instead of simply plugging in, they use kerosene lanterns that only illuminate spots in their home, walk miles to charge their mobile phones, or run a diesel genset for their business. How do you reinvent Solar Energy Supply for them?

23. NGO provides services and financial support to people with developmental disabilities. But for parents of children with disabilities, navigating the long and sometimes bewildering bureaucratic process

required to get such services often challenges their patience and persistence. Before NGO can determine which services, if any, are best for a child, staffers conduct a thorough assessment that entails meetings with parents, home visits by social workers, and evaluations by medical professionals including speech pathologists, psychologists, and nurses. Design a process to ensure Better and faster Service.

24. A company wish to provide internet access to everyone. Design a low cost, easily applicable model.

25. Use 'design thinking' can help lose weight, stop worrying, and change life of peoples.

26. Assume you are called in to help the struggling community bank, with around 40 employees and six branches. You immediately noticed that all banks offered the same lousy experience: bland, boring, forgettable. Most banks offer the same products at basically the same rates, too. If Xling was able to come up with a great product, it would be copied by the bigger banks within days. What could you do to make the bank better?

27. Your city metro train service is facing issues of troublesome experiences of travelers. The team has notices that the queues often built up at the service counters because customers asked the same simple questions again and again. How would you improve the services.

28. Violent crime and the loss of young lives in assaults pose a frightening problem in many urban city districts. Use design thinking to find how to 'Designing Out Crime Research Center' as solution.

29. City Hospital simply wishes improving staff hand-washing habits could prevent these needless infections. While hospitals have plenty of communal sinks and hand-sanitizing dispensers, time-strapped caregivers simply don't use them, they noticed medical staff wiped their hands on their scrubs. Use design thinking to give solutions.

30. The Wiley produces traditionally crafted 'Dutch Wax Print' fabrics for Indian markets. Lately, the organization faces disrupted markets, competition, and Chinese counterfeit. Use design thinking to come up with a new vision to secure its future.

Or any of your Startup Idea as project

B. Tech.- First Semester

Branch-CSE/CSE-

R/CS/IT/M.Tech.(int.)/CSE(IOT)/CSE(DS)/CSE(AI)/CSE((AIML)/CYS/ECE/ECE(VLSI)/ME/B T

Subject Code-BCSEH0151	L- T- P			
	0-0-6			
Subject Name- Problem Solving using Python	No. of hours-68			
Course Objective- To provide Basic knowledge of Python programming and to				
implement programming skills for solving real-world problems.				

Course Outcome –

CO1 - Understanding basic programming logic.

CO2- Implement python programs using decision control statements.

CO3- Implement user defined functions and modules in python.

CO4- Implement python data structures –lists, tuples, set, dictionaries.

CO5- Apply programming concepts to solve real world problem

Course Content

Uni t	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assignment/ Lab	CO Mappin g
Unit	Basics of	Problem	Lecture ,		Implementation of basic	1
1.	python programmi ng	Solving, Techniques, Algorithm, Building blocks of algorithms (statements, state, control flow, functions), Notation, Flow chart, Pseudo code, programming language, Categories of	Hands-on exercise, Demonstratio n, practical lab	6(4+2)	Python programs.	
		programming languages.				

		A Brief History of Python, Applications areas of python, The Programming Cycle for Python, Python IDE, Interacting with Python Programs.		3(1+2)	Installation of IDE and Command Prompt.	1
		Elements of Python: keywords and identifiers, variables, data types and type conversion,		3(1+2)	Demonstrate the use of these in python programs.	1
		operators in python, expressions in python, strings.		3(1+2)	Develop python program to demonstrate use of Operators.	1
Unit 2	Decision Control Statements	Conditionals: Conditional statement in Python (if-else statement, its working and execution)	Hands-on exercise, Demonstratio n, lectures, practical lab	3(1+2)	Develop programs for the use of conditional statements.	2
		Nested-if statement and elif statement in Python,		4(1+3)	Develop programs of different types of statements.	2

Unit	Function	Expression Evaluation & Float Representatio n. Loops: Purpose and working of loops, while loop, For Loop, Nested Loops, Break and Continue, pass statement.	Lecture ,	7(2+5) 4(1+3)	Hands on practice on Loops.	2
3	and Modules	of Function, calling a function, Function arguments, built in function, scope rules			create the functions.	
		Passing function to a function, recursion, Lambda functions		7(4+3)	Hands-on functions .	
		Modules and Packages: Importing Modules, writing own modules, Standard library		4(1+3)	Develop python programs for modules.	

		modules, dir() Function, Packages in Python				
Unit 4	Basic Data structures in Python	Strings: Basic operations, Indexing and Slicing of Strings, Comparing strings	Lecture , Hands-on exercise, Demonstratio n, practical lab	3(1+2)	Implement and play with strings.	4
		Regular expressions. Python Basic Data Structure: Sequence, Unpacking Sequences, Mutable Sequences,		4(1+3)	Demonstration of the regular expression.	
		Lists, Looping in lists, Tuples, Sets, Dictionaries. Map, filter, Reduce, Comprehensi on		7(3+4)	Implement different methods for these data structures.	
Unit 5	File and Exception handling	Files and Directories: Introduction to File Handling in Python, Reading and Writing files,	Lecture , Hands-on exercise, Demonstratio n, practical lab	4(1+3)	Learn Python file handling methods and python file operations	5

	1		Γ	1	<u> </u>
	Additional file				
	methods,				
	Working with				
	Directories.				
	Excontion		6(2+4)	Learn about Python	5
	Exception		0(2+4)	exception handling methods	5
	Handling,				
	Errors, Run				
	Time Errors,				
	Handling IO				
	Exception,				
	Try-except				
	statement,				
	Raise				
2. Python Progr education	ramming using Pro	oblem solving a	pproach by	rofessional"—Third Edition, A ReemaThareja OXFORD Highe grams, CENGAGE Learning, 20	r
Reference Boo	ks:				
	g, —Introduction t tion, MIT Press , 2	•	and Program	mming Using Python", Revise	d and
2. Charles Dierb		on to Computer	Science usir	ng Python: A Computational P	roblem
3. Allen B. Dowr	· •		Like a Comr	nuter	
Links:	icy, ininki yulu				
UNIT 1: https://npt	el.ac.in/courses/1	.06/106/106100	<u>5182/</u>		
UNIT 2: https://npte	el.ac.in/courses/10	6/106/10610621	<u>2/</u>		
<u>https://ww</u>	<u>w.youtube.com/v</u>	watch?v=PqFKR	<u>apHrjw</u>		
UNIT 3: <u>https://npte</u>	l.ac.in/courses/106	/106/106106145	5/		

https://www.youtube.com/watch?v=m9n2f9lhtrw

https://www.youtube.com/watch?v=oSPMmeaiQ68

UNIT 4: <u>https://nptel.ac.in/courses/106/106/106106145/</u>

https://www.youtube.com/watch?v=ixEeeNjjOJ0&t=4s

UNIT 5: <u>https://nptel.ac.in/courses/106/106/106106145/</u>

https://www.youtube.com/watch?v=NMTEjQ8-AJM

LAB:

Total No. of Practicals : 228						
List o	of Prac	ticals				
Lab No.	Unit	Торіс	Program Logic Building	CO Mapping		
1.1	1	Basic Python(Syntax, Variable, Type Conversion)	Python Program to Print Statement	CO1		
1.2	1	Basic Python(Syntax, Variable, Type Conversion)	Swap two variables without using a temporary variable.	CO1		
1.3	1	Basic Python(Syntax, Variable, Type Conversion)	Check if a given number is even or odd.	CO1		
1.4	1	Basic Python(Syntax,	Find the largest of three numbers.	CO1		

	Variable, Type Conversion)		
1	Basic Python(Syntax, Variable, Type Conversion)	Convert a string to an integer.	CO1
1	Basic Python(Syntax, Variable, Type Conversion)	Convert an integer to a string.	CO1
1	Basic Python(Syntax, Variable, Type Conversion)	Convert a string to a floating-point number.	CO1
1	Basic Python(Syntax, Variable, Type Conversion)	Convert a floating-point number to an integer.	CO1
1	Basic Python(Syntax, Variable, Type Conversion)	WAP to demonstrate implicit and explicit type conversion.	CO1
1	Basic Python(Syntax, Variable, Type Conversion)	Convert Employee Count to Binary	CO1
1	Basic Python(Syntax, Variable, Type Conversion)	Convert Revenue to Currency Format	CO1
1	Operators	Write a program to Calculate Sum of 5 Subjects and Find Percentage (Max Mark in each subject is 100).	CO1
1	Operators		C01
	1 1 1 1 1 1	Python(Syntax, Variable, Type Conversion)1Basic Python(Syntax, Variable, Type Conversion)1Derators1Derators	Python(Syntax, Variable, Type Conversion)Convert an integer to a string.1Basic Python(Syntax, Variable, Type Conversion)Convert an integer to a string.1Basic Python(Syntax, Variable, Type Conversion)Convert a string to a floating-point number.1Basic Python(Syntax, Variable, Type Conversion)Convert a string to a floating-point number.1Basic Python(Syntax, Variable, Type Conversion)Convert a floating-point number to an integer.1Basic Python(Syntax, Variable, Type Conversion)WAP to demonstrate implicit and explicit type conversion.1Basic Python(Syntax, Variable, Type Conversion)Convert Employee Count to Binary Python(Syntax, Variable, Type Conversion)1Basic Python(Syntax, Variable, Type Conversion)Convert Revenue to Currency Format Python(Syntax, Variable, Type Conversion)1Basic Python(Syntax, Variable, Type Conversion)Convert Revenue to Currency Format Format1DeratorsWrite a program to Calculate Sum of 5 Subjects and Find Percentage (Max Mark in each subject is 100).

1.14	1	Operators	Write a program to Calculate Area of Rectangle, Square.	CO1
1.15	1	Operators	Write a program to Calculate Area of Scalene Triangle and Right-angle Triangle.	CO1
1.16	1	Operator	Write a program to find the perimeter of a circle, rectangle and triangle.	CO1
1.17	1	Operator	Write a program to Compute Simple Interest.	CO1
1.18	1	Operator	Write a program to Convert Fahrenheit temperature in to Celsius.	CO1
1.19	1	Operator	Write a program to Find the Gravitational Force Acting Between Two Objects.	CO1
1.20	1	Operator	Write a program to swap the values of two variables with and without using third variable.	CO1
1.21	1	Operator	Write a program to perform arithmetic operations on a = 8, b = 3.	CO1
1.22	1	Operator	Write a program to apply relational operations on a=8, b=3.	CO1
1.23	1	Operator	Write a program to apply assignment operations on a=8, b=3.	CO1
1.24	1	Operator	Write a program to apply logical operations on a=8, b=3.	CO1
1.25	1	Operator	Write a program to apply bitwise operations on a=8, b=3.	CO1

1.26	1	Operator	Write a program to apply identity operators.	CO1
1.27	1	Operator	Write a program to Swap the Contents of two Numbers using Bitwise XOR Operation	CO1
1.28	1	Operator	WAP to find the absolute value of the given number.	CO1
1.29	1	Operator	Write a program to Add two Complex Numbers.	CO1
1.30	1	Operator	Write a Program to find roots of a quadratic expression.	CO1
1.31	1	Arithmetic Operator	Program to perform basic arithmetic operations (addition, subtraction, multiplication, division) on two numbers.	CO1
1.32	1	Arithmetic Operator	Program to calculate the area of a rectangle using the multiplication operator.	CO1
1.33	1	Arithmetic Operator	Program to calculate the average of a list of numbers using the division operator.	CO1
1.34	1	Comparison Operator	Program to compare two numbers and determine if they are equal.	CO1
1.35	1	Comparison Operator	Program to compare two numbers and determine whether they are greater than or less than .	CO1
1.36	1	Comparison Operator	Program to check if a given string is equal to a specific value.	CO1
1.37	1	Logical Operator	Write a program to apply Logical AND operator on two operands.	CO1

1.38	1	Logical Operator	Write a program to apply Logical OR operator on two operands.	CO1
1.39	1	Logical Operator	Write a program to apply Logical NOT operator on an operand.	CO1
1.40	1	Assignment operator	Program to increment or decrement a variable using assignment operators.	CO1
1.41	1	Assignment operator	Program to calculate compound interest using compound assignment operators.	CO1
1.42	1	Bitwise Operator	Program to perform bitwise AND, OR, XOR, left shift, and right shift operations.	CO1
1.43	1	Bitwise Operator	Program to check if a given number is odd or even using bitwise operators.	CO1
2.1	2	Conditional Statements	Write a program to Accept two Integers and Check if they are Equal.	CO 2
2.2	2	Conditional Statements	Write a program to Check if a given Integer is Positive or Negative and Odd or Even.	CO 2
2.3	2	Conditional Statements	Write a program to Check if a given Integer is Divisible by 7 or not.	CO 2
2.4	2	Conditional Statements	Write a program to find the greatest of three numbers using else if ladder.	CO 2

2.5	2	Conditional	Write a program to find the greatest of three	CO 2
		Statements	numbers using Nested if.	
2.6	2	Conditional	Write a program to convert an Upper-case character	CO 2
		Statements	into lower case and vice-versa.	
2.7	2	Conditional	Write a program to check weather an entered year	CO 2
		Statements	is leap year or not.	
2.8	2	Conditional	Write a Program to check whether an alphabet	CO 2
		Statements	entered by the user is a vowel or a constant.	
2.9	2	Conditional	Write a program to print day according to the day	CO 2
		Statements	number entered by the user.	
2.10	2	Conditional	Write a program to print color name, if user enters	CO 2
		Statements	the first letter of the color name.	
2.11	2	Conditional	Write a program to Simulate Arithmetic Calculator.	CO 2
		Statements		
2.12	2	Conditional	Write a menu driven program for calculating area of	CO 2
		Statements	different geometrical figures such as circle, square,	
			rectangle, and triangle.	
2.13	2	Conditional	WAP that accepts the marks of 5 subjects and finds	CO 2
		Statements	the percentage marks obtained by the student. It	
			also prints grades according to the following	
			criteria: Between 90-100% Print 'A', 80-90% Print	
			'B', 60-80% Print 'C', 50-60% Print 'D', 40-50% Print	
			'E', Below 40% Print 'F'.	
2.14	2	Conditional	WAP to enter a character and then determine	CO 2
		Statements	whether it is a vowel, consonants, or a digit.	

2.15	2	Loops	Write a program to display all even numbers from 1 to 20	CO 2
2.16	2	Loops	Write a program to print all the Numbers Divisible by 7 from 1 to 100.	CO 2
2.17	2	Loops	Write a program to print table of any number.	CO 2
2.18	2	Loops	Write a program to Find the Sum of first 50 Natural Numbers using for Loop.	CO 2
2.19	2	Loops	Write a program to calculate factorial of a given number using for loop and also using while loop.	CO 2
2.20	2	Loops	Write a program to count the sum of digits in the entered number.	CO 2
2.21	2	Loops	Write a program to find the reverse of a given number.	CO 2
2.22	2	Loops	Write a program to Check whether a given Number is Perfect Number.	CO 2
2.23	2	Loops	Write a program to Print Armstrong Number from 1 to 1000.	CO 2
2.24	2	Loops	Write a program to Compute the Value of X ⁿ .	CO 2
2.25	2	Loops	Write a program to Calculate the value of ⁿ C _r .	CO 2
2.26	2	Loops	Write a program to generate the Fibonacci Series.	CO 2
2.27	2	Loops	Write a program to check whether a given Number is Palindrome or Not.	CO 2
2.28	2	Loops	Write a program to Check whether a given Number is an Armstrong Number.	CO 2

2.29	2	Loops	Write a program to print all prime numbers from 1-	CO 2
			500.	
2.30	2	Loops	Write a program to find the Sum of all prime	CO 2
			numbers from 1-1000.	
2.31	2	Loops	Write a program to display the following pattern:	CO 2
			* * * *	
			* * * *	
			* * * *	
			* * * *	
			* * * *	
2.32	2	Loops		CO 2
			Write a program to display the following pattern:	
			*	
			* *	
			* * *	
			* * * *	
			* * * *	
2.33	2	Loops		CO 2
			Write a program to display the following pattern:	
			1	
			1 2	
			123	

			1234	
			12345	
2.34	2	Loops	Write a program to display the following pattern:	CO 2
			A	
			ВВ	
			ссс	
			EEEE	
2.35	2	Loops	Write a program to display the following pattern:	CO 2
			* * * *	
			* * * *	
			* * *	
			* *	
			*	
2.36	2	Loops	Write a program to display the following pattern:	CO 2
			1 2 3 4 5	
			1234	
			123	
			12	
			1	
2.37	2	Loops	Write a program to display the following pattern:	CO 2

2 2
2 2
D 2

			456	
			78910	
2.41	2	Loops	Write a program to display the following pattern.	CO 2
2.41	2	Loops	Write a program to display the following pattern:	02
			ABCDEFGFEDCBA	
			ABCDEF FEDCBA	
			A B C D E E D C B A	
			A B C D D C B A	
			АВС СВА	
			A B B A	
			A A	
2.42	2	Loops	Write a program to display the following pattern:	CO 2
			*	
			* *	
			* * *	
			* * * *	
			* * * *	
			* * * *	
			* * * *	
			* * *	

			* *	
			*	
2.42	2			
2.43	2	Loops	Write a program to display the following pattern:	CO 2
			0 0	
			01 10	
			010 010	
			0101 1010	
			0101001010	
2.44	2	Loops	Write a program to display the following pattern:	CO 2
			А	
			B C	
			DEF	
			GHIJ	
			KLMNO	
2.45	2	Loops	Write a program to display the following pattern:	CO 2
			А	
			ВАВ	
			CBABC	
			DCBABCD	
			EDCBABCDE	

2.46	2	Loops	Write a program to Find the Sum of A.P Series.	CO 2
2.47	2	Loops	Write a program to Find the Sum of G.P Series.	CO 2
2.48	2	Loops	Write a program to Find the Sum of H.P Series.	CO 2
2.49	2	Loops	Write a program to print the following sequence of integers. 1, 2, 4, 8, 16, 32	CO 2
2.50	2	Loops	Write a program to find the Sum of following Series: (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + + (n*n)	CO 2
2.51	2	Loops	Write a program to find the Sum of following Series: (1^1) + (2^2) + (3^3) + (4^4) + (5^5) + + (n^n)	CO 2
2.52	2	Loops	Write a program to find the Sum of following Series: (1!/1) + (2!/2) + (3!/3) + (4!/4) + (5!/5) + + (n!/n)	CO 2
2.53	2	Loops	Write a program to print the following Series: 1, 2, 3, 6, 9, 18, 27, 54, upto n terms	CO 2
2.54	2	Loops	Write a program to print the following Series: 2, 15, 41, 80, 132, 197, 275, 366, 470, 587	CO 2
2.55	2	Loops	Write a program to print the following Series:1, 3, 4, 8, 15, 27, 50, 92, 169, 311	CO 2
2.56	2	Loops	Write a program to Convert the given Binary Number into Decimal.	CO 2

2.57	2	Loops	Write a program to Convert Binary to Hexadecimal.	CO 2
2.58	2	Loops	Write a program to find out L.C.M. of two numbers.	CO 2
2.59	2	Loops	Write a program to find out H.C.F. of two numbers.	CO 2
2.60	2	Loops	Python Program to Accept Three Digits and Print all Possible Combinations from the Digits.	CO 2
2.61	2	Loops	Python Program to Print Odd Numbers within a Given Range.	CO 2
2.62	2	Loops	Python Program to Find the Smallest Divisor of an Integer.	CO 2
2.63	2	Loops	Python Program to Count the Number of Digits in a Number	CO 2
2.64	2	Loops	Python program to find GCD between two given integer numbers.	CO 2
3.1	3	Functions	Write a Python function to find the Max of three numbers.	CO3
3.2	3	Functions	Write a Python function to sum all the numbers in a list. Sample List : (8, 2, 3, 0, 7) Expected Output : 20	CO3
3.3	3	Functions	Write a Python program to reverse a string. Sample String : "1234abcd" Expected Output : "dcba4321"	CO3
3.4	3	Functions	Write a Python function to check whether a number falls in a given range.	CO3

3.5	3	Functions	Write a Python function that accepts a string and	CO3
			calculate the number of upper-case letters and	
			lower-case letters.	
			Sample String: 'The quick Brow Fox'	
			Expected Output :	
			No. of Upper case characters : 3	
			No. of Lower case Characters : 1	
3.6	3	Functions	Write a Python function that takes a number as a	CO3
			parameter and check the number is prime or not.	
3.7	3	Functions	Write a Python function that checks whether a	CO3
			passed string is palindrome or not.	
3.8	3	Functions	Write a Python function that prints out the first n	CO3
			rows of Pascal's triangle.	
3.9	3	Functions	Write a Python function that accepts a hyphen-	CO3
			separated sequence of words as input and prints	
			the words in a hyphen-separated sequence after	
			sorting them alphabetically.	
			Sample Items: green-red-yellow-black-white	
			Expected Result: black-green-red-white-yellow	
3.10	3	Functions	Python function to convert height (in feet and	CO3
			inches) to centimeters	
3.11	3	Functions	Python function to Convert Celsius to Fahrenheit.	CO3
3.12	3	Functions	Implement a function to check if two strings are	CO3
			anagrams of each other.	
3.13	3	Functions	Python function to display all the Armstrong	CO3
	1	1	number from 1 to n.	1

3.14	3	Recursion	Write a program using recursion to compute	CO3
			factorial of a given number.	
3.15	3	Recursion	Write a program to print Fibonacci Series using	CO3
			recursion.	
3.16	3	Recursion	Write a program to calculate sum of numbers 1 to N	CO3
			using recursion.	
3.17	3	Recursion	Write a program to Find Sum of Digits of the	CO3
			Number using Recursive Function.	
3.18	3	Recursion	Write a program to print Tower of Hanoi using	CO3
			recursion.	
3.19	3	Recursion	Python Program to Determine How Many Times a	CO3
			Given Letter Occurs in a String Recursively	
3.20	3	Recursion	Python Program to Find the Binary Equivalent of a	CO3
			Number Recursively	
3.21	3	Recursion	Python Program to Find the GCD of Two Numbers	CO3
			Using Recursion	
3.22	3	Recursion	Python Program to Find the Power of a Number	CO3
			Using Recursion	
3.23	3	Recursion	WAP to compute the sum of all the elements of the	CO3
			list using reduce() function.	
3.24	3	Modules and	A) Write a program to create a module and import	CO3
		Pacakges	the module in another python program.	
3.25	3	Modules and	Write a program program to import all objects from	CO3
		Pacakges	a modules, specific objects from module and	

			provide custom import name to the imported object from the module.	
3.26	3	Modules and Pacakges	Create a python package having atleast two modules in it.	CO3
3.27	3	Modules and Pacakges	Create a python package having atleast one subpackage in it.	CO3
4.1	4	String	Python program to check whether the string is Symmetrical or Palindrome	CO 4
4.2	4	String	Ways to remove i'th character from string in Python	CO 4
4.3	4	String	Python program to Check if a Substring is Present in a Given String	CO 4
4.4	4	String	Find length of a string in python (4 ways)	CO 4
4.5	4	String	Python program to print even length words in a string	CO 4
4.6	4	String	Python program to accept the strings which contains all vowels	CO 4
4.7	4	String	Remove all duplicates from a given string in Python	CO 4
4.8	4	String	Python program to Maximum frequency character in String	CO 4
4.9	4	String	Python Program to Replace all Occurrences of 'a' with \$ in a String	CO 4

4.10	4	String	Python Program to Form a New String where the	CO 4
			First Character and the Last Character have been	
			Exchanged	
4.11	4	String	Python Program to Count the Number of Vowels in	CO 4
			a String	
4.12	4	String	Python Program to Take in a String and Replace	CO 4
			Every Blank Space with Hyphen	
4.13	4	String	Python Program to Calculate the Length of a String	CO 4
			Without Using a Library Function	
4.14	4	String	Python Program to Remove the Characters of Odd	CO 4
			Index Values in a String	
4.15	4	String	Python Program to Calculate the Number of Words	CO 4
			and the Number of Characters Present in a String	
4.16	4	String	Python Program to Take in Two Strings and Display	CO 4
			the Larger String without Using Built-in Functions	
4.17	4	String	Python Program to Check if a String is a Pangram or	CO 4
			Not	
			(A pangram is a sentence that uses all 26 letters of	
			the English alphabet at least once. like" The quick	
			brown fox jumps over the lazy dog")	
4.18	4	String	Python Program to Accept a Hyphen Separated Sequence of Words as Input and Print the Words in	CO 4
			a Hyphen-Separated Sequence after Sorting them	
			Alphabetically	
4.19	4	String	Python Program to Form a New String Made of the	CO 4
			First 2 and Last 2 characters From a Given String	

			number. ii) Find all names having phone number with a	
			code and a hyphen followed by an 8-digit	
			i) Phone number contains a 3- or 2-digit area	
			following:	
			and phone numbers separated by spaces in the	
4.25	4	Regular Expression	Given an input file which contains a list of names	CO 4
4.24	4	Regular Expression	Write a python program to validate mobile number.	CO 4
			vi) Maximum length of password:12.	
			v) Maximum length of password 6.	
			iv) Contain atleast 1 character from \$,#,@.	
			iii) Contain atleast 1 letter between A and Z.	
			ii) Contain atleast 1 number between 0 and 9.	
			i) Contain atleast 1 letter between a and z.	
			satisy the following criteria:	
			password given by the user. The password should	
4.23	4	Regular Expression	Write a python program to check the validity of a	CO 4
			a string.	
4.22	4	String	Python Program to Find the Most Repeated Word in a String.	
4.22	4	String	Python Program to Find the Most Repeated Word in CO 4	
			a Given String	
4.21	4	String	Python Program to Check if a Substring is Present in	CO 4
			character in a Given String Sentence	
4.20	4	String	Python Program to Count the Occurrences of Each	

4.27	4	List	WAP to find min, max and average of elements of a	CO 4	
			list having numeric data		
4.28	4	List	Program to check if element exists in list	CO 4	
4.29	4	List	Program for Reversing a List	CO 4	
4.30	4	List	Program to Multiply all numbers in the list	CO 4	
4.31	4	List	Program to find smallest and largest number in a list	CO 4	
4.32	4	List	Program to find second largest number in a list	CO 4	
4.33	4	List	Program to print all even numbers in a range	CO 4	
4.34	4	List	Program to print all negative numbers in a range	CO 4	
4.35	4	List	Program to Remove multiple elements from a list in Python	CO 4	
4.36	4	List	Program to Cloning or Copying a list CO		
4.37	4	List	Program to Count occurrences of an element in a CO list		
4.38	4	List	Program to find Cumulative sum of a list	CO 4	
4.39	4	List	Program to Break a list into chunks of size N in Python	o chunks of size N in CO 4	
4.40	4	List	Python Program to transpose of Matrix.	CO 4	
4.41	4	List	Python Program to Add Two Matrices.	CO 4	
4.42	4	List	Python Program to Multiply Two Matrices.	CO 4	
4.43	4	List	Program to get K th Column of Matrix	CO 4	

4.44	4	List	WAP to print all even numbers of a list using list	CO 4
			comprehension.	
4.45	4	List	WAP that prompts user to enter an alphabet and	CO 4
			then print all the words that starts with that	
			alphabet from the list of words.	
4.46	4	List	WAP to transpose a given matrix using list	CO 4
			comprehension.	
4.47	4	List	Print All the characters of a string using list	CO 4
			Comprehension	
4.48	4	List	Write a program to calculate square of numbers	CO 4
			upto n using list comprehension.	
4.49	4	Tuple	Python program to Find the size of a Tuple	CO 4
4.50	4	Tuple	Python – Maximum and Minimum K th elements in	CO 4
			Tuple	
4.51	4	Tuple	Create a list of tuples from given list having number	CO 4
			and its cube in each tuple	
4.52	4	Tuple	Python – Flatten tuple of List to tuple	CO 4
4.53	4	Set	Python Program to Count the Number of Vowels	CO 4
			Present in a String using Sets	
4.54	4	Set	Python Program to Check Common Letters in Two	CO 4
			Input Strings	
4.55	4	Set	Python Program that Displays which Letters are in	CO 4
			the First String but not in the Second	

4.56	4	Set	Python Program that Displays which Letters are	CO 4
			Present in Both the Strings	
4.57	4	Set	Python Program that Displays which Letters are in	CO 4
			the Two Strings but not in Both	
4.58	4	Dictionary	Python Program to Add a Key-Value Pair to the	CO 4
			Dictionary	
4.59	4	Dictionary	Python Program to Concatenate Two Dictionaries	CO 4
			into One.	
4.60	4	Dictionary	Python Program to Check if a Given Key Exists in a	CO 4
			Dictionary or Not	
4.61	4	Dictionary	Python Program to Generate a Dictionary that	CO 4
			Contains Numbers (between 1 and n) in the Form	
			(x,x*x).	
4.62	4	Dictionary	Python program to create an instance of an Ordered	CO 4
			dict using a given dictionary. Sort the dictionary	
			during the creation and print the members of the	
			dictionary in reverse order.	
4.63	4	Dictionary	Python Program to Sum All the Items in a Dictionary	CO 4
4.64	4	Dictionary	WAP to create dictionary which has characters of	CO 4
			given string as keys and frequency of characters as	
			values.	
4.65	4	Dictionary	Python Program to Multiply All the Items in a	CO 4
			Dictionary	
4.66	4	Dictionary	Python Program to Remove the Given Key from a	CO 4
			Dictionary	

4.67	4	Dictionary	Python Program to Form a Dictionary from an	CO 4	
			Object of a Class		
4.68	4	Dictionary	Python Program to Map Two Lists into a Dictionary	CO 4	
4.69	4	Comprehension	Write a program Filtering even numbers from a list		
			using tuple comprehension		
4.70	4	Comprehension	Creating a list of tuples from two lists using	CO 4	
			comprehension function		
4.71	4	Comprehension	Extracting the first character from each word in a	CO 4	
			list of strings		
4.72	4	Comprehension	Swapping keys and values in a dictionary	CO 4	
4.73	4	Comprehension	Filtering even numbers from a dictionary:	from a dictionary: CO 4	
4.74	4	Comprehension	Write a Program to calculate square of number		
			using dictonary comprehension		
5.1	5	File handling and	Python program to read file word by word	CO 5	
		Exceptional Handling			
5.2	5	File handling and	Python program to read character by character	CO 5	
		Exceptional Handling	from a file		
5.3	5	File handling and	Python – Get number of characters, words, spaces	CO 5	
		Exceptional Handling	and lines in a file		
5.4	5	File handling and	Program to Find 'n' Character Words in a Text File	CO 5	
		Exceptional Handling			
5.5	5	File handling and	Python Program to obtain the line number in which	CO 5	
		Exceptional Handling	given word is present		

5.6	5	File handling and Exceptional Handling	Count number of lines in a text file in Python	CO 5	
5.7	5	File handling and Exceptional Handling	Python Program to remove lines starting with any prefix	th any CO 5	
5.8	5	File handling and Exceptional Handling	Python Program to Eliminate repeated lines from a file	CO 5	
5.9	5	File handling and Exceptional Handling	Python Program to read List of Dictionaries from File	CO 5	
5.10	5	File handling and Exceptional Handling	Python – Append content of one text file to another CO		
5.11	5	File handling and Exceptional Handling	Python program to copy odd lines of one file to CO other CO		
5.12	5	File handling and Exceptional Handling	Python Program to merge two files into a third file	CO 5	
5.13	5	File handling and Exceptional Handling	Python program to Reverse a single line of a text file	CO 5	
5.14	5	File handling and Exceptional Handling	Python program to reverse the content of a file and store it in another file	CO 5	
5.15	5	File handling and Exceptional Handling	Python Program to handle divide by zero exception.	CO 5	
5.16	5	File handling and Exceptional Handling	WAP to handle multiple exception.	CO 5	

5.17	5	File handling and Exceptional Handling	Python program to combine each line from first file with the corresponding line in second file.	CO 5
5.18	5	File handling and Exceptional Handling	Write a program to copy the contents of one file toCO 5another.	
5.19	5	File handling and Exceptional Handling	Write a program to print First 5 line in a file CO	
5.20	5	File handling and Exceptional Handling	 a) Write a program to catch the following exception: i) Value error ii) Index error iii) Name error iv) Type error v) Divide zero error b) Write a program to create user defined exceptions. c) Write a program to understand the use of else and finally block with try block. d) Write a python program that uses raise and exception class to throw an exception. 	CO 5

Subject Code-BASH0151A	L	Т	Р		
	0	0	2		
Subject Name- ENGINEERING PHYSICS LAB	No	. of H	ours:		
(Common for all branches except CSBS)					
Course Objective-					
1. To provide the practical knowledge of the phenomenon of interference, diffraction and polarization.					
2. To provide the practical knowledge of energy band gap and resistivity.					
3. To provide the practical knowledge of the measurement techniques of magnetism.					
4. To provide the practical knowledge of the flow of liquids and characteristics of photoelectric cell.					
5. To provide the practical knowledge of Planck's constant and dielectric constant.					
Course Outcome- After completion of this course students will be	able to:				

CO1- Apply the practical knowledge of the phenomenon of interference, diffraction and polarization.

CO2- Understand energy band gap and resistivity.

CO3- Develop the measurement techniques of magnetism.

CO4- Analyze the flow of liquids and characteristics of photoelectric cell.

CO5- Understand Planck's constant and dielectric constant.

Total No. of Practicals: 22(Minimum Ten experiments should be performed)

List of Practicals

Lab No.	Unit	Торіс	Program Logic Building	CO Mapping
1		To determine the wavelength of monochromatic light by Newton's ring.		CO1
2		To determine the focal length of two lenses by nodal slide and to verify the formula for the focal length of combination of two lenses.		CO1
3		To determine the specific rotation of cane sugar solution using Polarimeter.		CO1
4		To determine the wavelength of spectral lines using plane transmission grating.		CO1
5		To determine the specific resistance of a given wire using Carey Foster's bridge.		CO2
6		To study the variation of magnetic field along the axis of current carrying - circular coil and then to estimate the radius of the coil.		CO3
7		To verify Stefan's Law by electrical method.		CO2
8		To study the Hall effect and determine the Hall Coefficient, carrier density and mobility of a given semiconductor material using Hall effect setup.		CO2
9		To determine the energy band gap of a given semiconductor material.		CO2
10		To determine the coefficient of viscosity of a liquid.		CO4
11		To calibrate a voltmeter using potentiometer.		CO2
12		To calibrate a ammeter using potentiometer.		CO2

13	To determine E.C.E. of copper using Tangent or Helmholtz galvanometer.	CO3
14	To determine the magnetic susceptibility of a ferromagnetic salt (FeCl ₃) by using Quincke's tube method.	CO3
15	To study the hysteresis curve and then to estimate the retentivity and coercivity of a given ferromagnetic material.	CO3
16	To determine the angle of divergence of laser beam using He-Ne Laser.	C01
17	To determine the wavelength of laser using diffraction grating.	C01
18	To determine the numerical aperture of optical fiber.	CO1
19	To determine the Planck's constant using LEDs of known wavelength.	CO5
20	To determine the resistivity of given material using four probe method.	CO2
21	To determine the dielectric constant of the material by charging and discharging of capacitor.	CO5
22	To determine the characteristics of photoelectric cell.	CO4

Subject Code-BASLH0151	LTP
Subject Name- ABC (Lab)	0 0 4
	Total No. of Hours: 48
Total No. of Activities – 24	

Activity	Modules	Торіс	Program Logic Building	CO Mapping
Anubhava Activities	1	Getting rid of stage fear	Participants will gain confidence in expressing themselves through dance, overcome inhibitions, and develop a sense of freedom and creativity.	CO2
Dumb Charades	1	Enhancing communication skills and non- verbal expressions	Participants will improve their ability to communicate effectively using non- verbal cues, develop teamwork and collaboration skills, and enhance their creativity in conveying messages.	CO1
Chinese Whisper	1	Developing active listening and accurate communication skills	Participants will enhance their listening skills, practice conveying information accurately, and understand the importance of clear communication and active listening in avoiding miscommunication.	CO1
Picture Reading – Story Telling	2	Practice sessions for storytelling skills	Participants will enhance their ability to comprehend and interpret information from visual aids, develop storytelling skills, and engage in imaginative and creative thinking.	СОЗ
Reading Diagrams, Graphs, and Pie Charts	2	Exercises based on charts and diagrams	Participants will improve their ability to interpret and analyse data presented in diagrams, graphs, and pie charts, develop critical thinking skills, and make informed decisions based on visual information.	CO1
Assessment	2	Online Assessment		
Analysing Case Studies	2	Case Study: Badger Mining Corp Case Study	Participants will develop critical thinking skills, analyse the effectiveness of communication practices, and gain insights into real- world communication challenges and their solutions.	CO4

Reading Comprehension Exercise	2	Exercises based on reading comprehension	Participants will enhance their reading comprehension abilities, improve vocabulary and language skills, and develop strategies for efficient and effective reading.	CO1
Filling a Form	1	Filling forms accurately	Participants will improve their ability to understand and follow instructions, enhance their attention to detail, and develop proficiency in accurately filling out forms.	CO2
Flipped Classroom	1	Interactive reading experience through flipped class methodology	Participants will actively engage with reading materials, participate in discussions and activities that deepen understanding, and develop independent learning skills.	CO1
Infographics	1	Analysing information based on infographics	Participants will improve their ability to interpret and analyse information presented in infographics, develop visual literacy skills, and effectively communicate complex concepts using visual aids.	CO1
Songs and decoding the lyrics.	1	Decoding song lyrics	Participants will enhance their listening skills, improve understanding of language nuances through song lyrics, and develop an appreciation for different genres of music.	CO1
Assessment	2	Online Assessment		
Listening to instructions and directions	1	Listening based activity	Participants will improve their listening comprehension, enhance their ability to follow instructions & directions, and practice attention to detail.	CO2
Speech Analysis	2	Speech Analysis	Participants will develop critical thinking skills, analyze speech techniques and delivery styles, and gain insights into effective public speaking strategies.	CO3

Views on News Introducing your partner	2	News Analysis Introducing others and oneself	Participants will develop active listening skills, gain knowledge of current events, and engage in thoughtful discussions to express their views and opinions. Participants will improve their active listening skills, develop clarity in communication, and effectively convey specific information about their partner and themselves to others.	CO4 CO2
Role Plays	4	Role Playing Situations	Participants will practice effective communication strategies, develop empathy and understanding, and improve their ability to handle real-life situations through role-playing exercises.	CO4
GD (Group Discussion)	4	Group Discussions	Participants will enhance their ability to express their opinions, actively listen to others, and engage in constructive discussions to develop well-rounded perspectives.	CO5
Interview Handling Skills	4	Mock Interviews: Practising Behavioural and FAQs	The students will be able to respond to behavioural interview questions efficiently.	CO5
Presentation Skills	4	Articulating insights: Presentations	Participants will enhance their ability to deliver engaging presentations, effectively communicate their ideas, and exhibit confidence in public speaking.	CO5
Final Assessment	2	Writing Task for the Final Internal Assessment	Final Assessment	
Final Assessment	2	Group Presentations for	Final Assessment	

Final Internal	
Assessment	

Branch- CS	rst Semester 6/CSE/ CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/ ′LSI) /ME/M. Tech (Int.)/BT	CSE(AI)/CYS/
Subject Co	de-BMEH0151	L-T-P
		0-0-6
Subject Na	ame- Computer Aided Design (CAD) and Digital	No. of hours-
Manufactu	uring	
Course Ol	ojective- To Impart and familiarize the concepts of e	ngineering graphics using CAD
make the stu	To impart knowledge of 2-Dimensional Drawing and 3-Dim idents to experience digital manufacturing processes. To ex in industries.	0
Course ou	tcome: At the end of course, the students will be able	e to
C01	Understand the importance of drawing in engineering.	
CO2	Draw in 2-Dimensional spaces.	
CO3	Create models in 3-Dimensional spaces.	
CO4	Understand the concept of digital manufacturing.	
CO5	Apply the knowledge of digital manufacturing in industries.	

Course Content

Un it	Module	Topics Covered	Pedagogy	Lectur e Requir ed (T=L+P)	Aligned Practical/Assignm ent/Lab	CO Mappi ng
1	Introduction to CAD	Introduction to Engineering Drawings, Scale, Coordinate System, Types of View: Orthographic, Isometric & Perspective, Type of Projection, Sections of solids and Development of surfaces, Introduction to CAD Software such as AutoCAD/PTC Creo/CATIA/Fusion 360/Solid Works etc., Exploring GUI, Workspaces, Co-ordinate	PPT/Animate d Videos/ Experiment based learning/ Activity based learning	8=2+6	CAD Lab (AutoCAD, PTC CREO)	CO-1

		systems, File Management, Display				
2	Working on CAD in 2D environment	Control. Starting with Sketching, Working with Drawing Aids, Editing Sketched Objects, Layers, Creating Text and Tables, Dimensioning and Detailing of Drawings, Editing Dimensions, Dimension Styles, Adding Constraints to Sketches, Hatching Drawings, Paper Layout, Plotting Drawings in AutoCAD, Template Drawings.	PPT/Animate d Videos/ Experiment based learning/ Activity based learning/ Software based	8=2+6	CAD Lab (AutoCAD)	CO-2
3	Working on CAD in 3D environment	Introduction to 3D Modeling, 3D Environment and Drawing, Modeling Workflow, Editing Models, Sectioning a Model and Creating Drawings, Visualization, Downstream, Rectangular 3D coordinates, 3D Construction techniques, Constructing wireframe objects, Constructing solid primitives, dynamically changing a 3D view, and shading a 3D model, Blueprint Drawing, Uses of Digital Prototype.	PPT/Animate d Videos/ Experiment based learning/ Activity based learning/ Software based	8=2+6	CAD Lab (AutoCAD)	CO-3
4	Introduction to Digital Manufacturi ng	Introduction to workshop layout, engineering materials, Fitting, Carpentry, Forging, Casting, Welding, Forming. Basic Machining Tools- Lathe, Milling, Drilling, Shaper, Grinding. Introduction to Digital Manufacturing: - additive manufacturing, basics of automation & robotics; Concepts of Industry 5.0 (Videos & Quizzes)	PPT/Animat ed Videos/ Experiment based learning/ Activity based learning/ Simulation/ Virtual Labs	8=2+6	Workshop, CAD Lab	CO-4

5	Applications of Digital Manufacturi ng	3D Modelling and simulation of- various Forming, Machining in CAD Basic introduction to 3D Printing & Technologies (FDM, LDM, SLA)- Slicing software, Types of Production, Various types of Industries, Introduction to Smart Factory.	PPT/Animate d Videos/ Experiment based learning/ Activity based learning/ Simulation/ Virtual Labs	8=2+6	CAD Lab (AutoCAD)	CO-5
		Patna, Amity Universit om Training Centre Ahr	-	ersity, VI	T Vellore, IMT Pun	е,
	 Engi Engi Engi CAI A co Delhi Indu 	and book on AUTOCAD tool g. Graphics, by Agrawal B. & g. Drawing by Bhatt ND. D by CAM by M.P. Grover. Sourse in Workshop technology strial automation and Robotics C Fundamentals and Programn	Agrawal CM., T by B.S. Raghuw s by A.K. Gupta	TMH Public vanshi, Vol ., S K Arora	I & II, Dhanpat Rai & sc , Laxmi publication	
Ref	ference Book	S: g. Drawing +AUTOCAD 6 th E onal Publishers	·	ugopal & V	Prabhu Raja, New Age	
	 Com House P Adv Kalp Pearson Rapi CNO 	aputer Aided Engineering Drav vt. Ltd., New Delhi, 3rdrevised ance CAD Modelling by Nico pakjian S. And Steven S. Schm Education India Edition, 2002 d Product Development, Kimu C Machines by M.Adhitan, B.S. D/CAM, by Groover and Zimn	d edition-2006 la & Duhovnik nid, "Manufactur ura Fumihiko S Pabla; New ago	ring Enginee e internatior	ering and Technology", 4	-

La	UNIT		Simulato	СО
No	•	Торіс		Mapping
•				11 8

			Software	
1		To create design of a robotic Arm model on CAD	AutoCA D	CO1
2		To draw & design a Cell phone adapter in CAD Software.	AutoCA D	CO1
3		To create layout of job shop, batch shop and continuous manufacturing on CAD	AutoCA D	CO1
4		To draw the orthographic projection view of Hub, Arms, and Face of a Pulley		CO1
5		To draw the isometric projection view of Pipe, 90 degree elbow and 180 degree bend of a piping system		CO1
6		To draw the isometric projection view of motor coupling in CAD Software		CO1
7		To draw the orthographic projection view of a Study Chair.		CO1
8		To draw the isometric projection view of one way mobile connector		CO1
9		Two dimensional drawings of Cam and Rocker Arm on AutoCAD.		CO1
10	1	To create a design of a Soap Case on CAD software.		CO1
11		To draw a two way cable connector on CAD software.		CO1
12		To draw orthographic projections of hexagonal bolt in CAD Software.		CO1
13		Two dimensional drawings of washer on AutoCAD.		CO1
14		Two dimensional drawings of Gaskets of a vacuum pump on AutoCAD.		CO1
15		To create 2D Drawings of Ring and Pinion Gear in CAD Software.		CO1
16		To draw and design a phone stand/tripod in CAD software		CO1
17		To draw an orthographic projection view of Edge Flange in CAD Software		CO1
18		To draw the orthographic projection view of Fork End of a Knuckle Shaft		CO1
19		To draw an orthographic projection view of Roller Stud in CAD Software	AutoCA D AutoCA	CO1
20		To design a quadcopter drone on CAD		CO2
21	2	To design a digital camera on CAD		CO2
22		To design the layout of intent device connector on CAD		CO2
23		To model & design a motor coupling in CAD Software.		CO2

г <u>г</u>			
24	To design a 3D Model of a one way mobile connector.	AutoCA D	CO2
25	To create 2D drawings of Helical Gear in AutoCAD Software.	AutoCA D	CO2
26	To draw & design a socket welded produced elbow in CAD Software.	AutoCA	CO2
27	To draw & design a socket welded produced erbow in CAD software.	AutoCA	02
	To create 2D model of crane hook	D AutoCA	CO2
28	Two dimensional drawing of seal cover on AutoCAD software.	D	CO2
29	Two dimensional drawings of a Friction plate on AutoCAD.		CO2
30	To create 2D drawing of a threaded rod using AutoCAD Software.	AutoCA D	CO2
31	Create 2D drawings of Cam and camshaft bearings in AutoCAD	AutoCA D	CO2
32	To design a socket weld cross fitting model in CAD Software.	AutoCA D	CO2
33	To draw orthographic view of engine cylinder head in CAD software	AutoCA	CO2
34	To demonstrate & draw a threaded rod using AutoCAD Software.	AutoCA	CO2
35	To design a wrench in AutoCAD Software.	AutoCA	CO2
36		AutoCA	CO2
37	To design a wrist watch in AutoCAD Software.	AutoCA	02
57	To design a slip-on flange in AutoCAD Software.	D AutoCA	CO2
38	To design a CAR Wheel in CAD Software.		CO2
39	Modelling and designing of steering wheel of a car in CAD software	AutoCA D	CO2
40		AutoCA	
41	To create drawings of a Connecting Rod and Gudgeon pin on CAD software. To demonstrate a Butt-weld Straight Pipe Tee fitting and design it in CAD	AutoCA	CO2
	Software.	D AutoCA	CO2
42	To create a 2D drawing of Cotter and Sleeve	D	CO2
43	To create 2D drawing of Knuckle Pin, Taper Pin and Collar in CAD Software	AutoCA D	CO2
44	To design a digital X-ray Machine on CAD	AutoCA D	CO2
45	To design & assemble a 3D pipe routing in CAD Software.	AutoCA	CO2
46		AutoCA	CO2
47	To design an electric motor on CAD	AutoCA	
	To create design of a CNC Lathe on CAD	D	CO2

<u>г</u>			· ~ ·	
48		To create design of a Shaper Machine on CAD	AutoCA D	CO2
49		To create design of a Milling Machine on CAD	AutoCA D	CO2
50		To create design of a drilling Machine on CAD	AutoCA	CO2
51			AutoCA	
		To create design of carpentry joints on CAD	D AutoCA	CO2
52		To create 2D drawings of Cam and followers on CAD	D AutoCA	CO2
53		To create design of a 3D printer machine on CAD	D	CO2
54		To create layout of workshop on CAD	AutoCA D	CO2
55		To design & assemble a 3d model of Cotter and Sleeve Joint with all dimensions and allowances	AutoCA D	CO3
56		To design & assemble a 3d model of knuckle joint with dimensions and allowances	AutoCA	
57		in CAD Software.	D AutoCA	CO3
		To draw & model a spiral spring in AutoCAD Software.	D AutoCA	CO3
58		To design an edge flange on base flange using CAD Software.	D	CO3
59		To model & design a Roller Stud in CAD Software.	AutoCA D	CO3
60		To model & design a Pulley used to transmit power.	AutoCA D	CO3
61			AutoCA	
62		To model & design a 3D Model of a Study Chair in AutoCAD Software.	D AutoCA	CO3
	-	To design the 3D assembly of Cam and Rocker Arm on AutoCAD.	D AutoCA	CO3
63	3	To create a 3D model of water bottle in CAD Software.	D	CO3
64		To create the 3D drawing of Differential on AutoCAD.	AutoCA D	CO3
65		Modelling and designing of door lock handle in CAD software	AutoCA D	CO3
66			AutoCA	
67		To design & model a chain ring in CAD Software.	AutoCA	CO3
		To create 3D model of crane hook	D AutoCA	CO3
68		Modelling and designing of a fry pan used in kitchen		CO3
69		To draw and modelling of Camshaft assembly used in multicylinder engines.	D	CO3
70		Modelling and designing of a rotor of turbine	AutoCA D	CO3
71		3D modelling of a kitchen sink in CAD Software.	AutoCA D	CO3
			_	

			1.	1
72		To create 3D design of Auto headlight reflector on AutoCAD software.	AutoCA D	CO3
73		To design a 3d design of water pump fan in CAD Software.	AutoCA D	CO3
74		To design a wrist watch in AutoCAD Software.	AutoCA D	CO3
75		Designing and modelling of wardrobe in CAD Software	AutoCA	CO3
76		Modelling and designing of English toilet seat in CAD software	AutoCA	CO3
77			AutoCA	CO3
78		Modelling and designing of steering wheel of a car in CAD software	AutoCA	
79		Modelling and designing of a computer mouse by mesh modelling in CAD software	AutoCA	CO3
80		Modelling and designing of a chair wheel of revolving chair	AutoCA	CO3
81		Modelling and designing of transition duct in CAD software	D AutoCA	CO3
		Modelling and designing of exhaust manifold of engine	D AutoCA	CO3
82		To design a 3D Model of a bike suspension in CAD Software.	D AutoCA	CO3
83		To model & design of a Drone Fan in CAD Software.		CO3
84		To demonstrate & design a Motorcycle front sprocket in CAD Software.	D	CO3
85		To draw elevation and plan of a home on CAD.		CO3
86		To draw elevation and plan of a town on CAD.		CO3
87		To create an assembly of a Connecting Rod on CAD software.		CO3
88		To design a water tap in AutoCAD Software.	AutoCA D	CO3
89		To design a Foot Step Power Generator in Designing Software.	AutoCA D	CO3
90		To create an Cam Follower assembly on CAD software.	AutoCA D	CO3
91		Introduction and demonstration of manufacturing processes- Fitting, Carpentry	Virtual Simulato	CO4
9 2	4	To simulate different fitting operations through simulation	Process Simulato r	CO4
9 3		To Introduce students to basic wood carving techniques using carving chisels and gouges	Process Simulato	CO4
94		To practice carving simple designs or patterns on wooden blocks.		CO4

		Virtual	
95	Interchanting and demonstration of an anti-strains Demonstration Continue	Simulato	
	Introduction and demonstration of manufacturing Processes- Forging, Casting To teach students basic hammering techniques used in forging, such as drawing out,	r	CO4
96	upsetting, bending.		CO4
97	Demonstrate the process of punching holes or slots in a forged work piece using a punch and drift		CO4
		Process	
8	To simulate forging process like punching, upsetting using process simulator	Simulato r	CO4
9		Process	
, 	To perform casting experiments using materials like aluminium or bronze.	Simulato r	CO4
0		Process Simulato	
0	To investigate the effect of mold temperature on cast parts.	r	CO4
		Process	
)1	To investigate the offect of nouring temperature on cost norts	Simulato	CO4
	To investigate the effect of pouring temperature on cast parts	r Process	C04
)2		Simulato	
	To investigate the effect of cooling rate on cast parts	r	CO4
3		Virtual Simulato	
,5	Introduction and demonstration of manufacturing Processes- Welding, Forming.	r	CO4
		Virtual	
4	To study different welded joints using different welding techniques.	Simulato r	CO4
	To study different welded joints using different welding techniques.	Process	04
5		Simulato	
	To simulate Electric arc welding through different welding techniques	r	CO4
)6		Process Simulato	
	To simulate MIG welding with the help of the processes simulator	r	CO4
I		Process	
)7	To simulate TIG welding with the help of the processes simulator	Simulato r	CO4
		Virtual	
8		Simulato	
	To study basic metal forming techniques(rolling, extrusion, wire drawing)	r Virtual	CO4
)9		Simulato	
	To simulate rolling process using virtual simulator	r	CO4
		Virtual	
0	To simulate extrusion process using virtual simulator	Simulato r	CO4
_		ı Virtual	
1		Simulato	
	To simulate wire drawing process using virtual simulator	r	CO4

			x 7 · · ·	
			Virtual	
112			Simulato	
		Study of Machining Tools- Lathe, Milling	r	CO4
			Virtual	
113			Simulato	
		Study of Machining Tools- Drilling, Shaper, Grinding		CO4
		brady of Machining 10015 Drining, braper, Ormanig	Process	001
114				
114			Simulato	004
		To simulate lathe machine to obtain desired shape and size.		CO4
			Process	
115			Simulato	
		To simulate drill machine to obtain holes of different diameter.	r	CO4
			Process	
116			Simulato	
110		To simulate lathe machine to obtain desired shape and size.		CO4
		To simulate fathe machine to obtain desired shape and size.	Construc	0
			tion	
117			Equipme	
			nt	
			Simulato	
		Study and demonstration of automation & robotics	r	CO4
118		To study the concepts of Industry 4.0		CO4
			Construc	
			tion	
119		3D Modelling and simulation of Machining in CAD	Equipme	
			nt	
			Simulato	
			r	CO5
			Construc	
			tion	
100			Equipme	
120			nt	
			Simulato	
		3D Modelling and simulation of sheet bending in CAD		CO5
				05
101	_		Process	
121	5	Setting up of work piece zero position and tool adjustment in CNC Turning	Simulato	~~~
		machine		CO5
			Control	
122			System	
$I \angle L$			Simulato	
				CO5
		To write and simulate CNC Part program for turning operation as per drawing	r	COJ
		To write and simulate CNC Part program for turning operation as per drawing		005
		To write and simulate CNC Part program for turning operation as per drawing	Control	000
		To write and simulate CNC Part program for turning operation as per drawing	Control System	000
			Control System Simulato	
		To write and simulate CNC Part program for furning operation as per drawing To write and simulate CNC Part program for facing operation as per drawing	Control System Simulato r	CO5
			Control System Simulato r Control	
123			Control System Simulato r Control System	
123			Control System Simulato r Control	

125 To write and simulate CNC Part program for milling operations. r CO5 126 Simulato r CO5 127 Study of FDM 3D Printing Technology. r CO5 128 Study of LDM 3D Printing Technology. r CO5 128 Study of SLA 3D Printing Technology. r CO5 128 Study of SLA 3D Printing Technology. r CO5 129 Visualization and conversion of CAD model on a slicing software. r CO5 130 Create a product using a 3D printer machine tool through different 3D printing rechniques Simulato r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, r Simulato r CO5 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation simulator sumulato software Simulato r 135 besign and implementation of Smart factory for Industry Revolution 4.2 r CO5 136 Designing and execuring different machining operations, stu			C a set sea 1	
123 To write and simulate CNC Part program for milling operations. Simulato 126 Process 127 Study of FDM 3D Printing Technology. r 128 Study of LDM 3D Printing Technology. r 128 Study of SLA 3D Printing Technology. r 129 Visualization and conversion of CAD model on a slicing software. r 129 Visualization and conversion of CAD model on a slicing software. r 130 Create a product using a 3D printer machine tool through different 3D printing simulato rechniques Robotics 131 Study of different type of production systems used in industry- Job, Batch, Mass, COS Process Simulato COS 132 Study of different types of industries (Case Studies and Examples) Process Simulato COS 133 Design and implementation of Smart factory for Industry Revolution 4.2 r COS 134 To create digital twins of given parts using smart manufacturing simulation simulator software Simulato COS Simulato COS 135 besign and implementation of Smart factory for Industry Revolution 4.2 r COS 136 Design and implementation of Smart factory for CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain particial			Control	
To write and simulate CNC Part program for milling operations. COS 126 Study of FDM 3D Printing Technology. r COS 127 Study of FDM 3D Printing Technology. r COS 128 Study of LDM 3D Printing Technology. r COS 129 Study of SLA 3D Printing Technology. r COS 129 Study of SLA 3D Printing Technology. r COS 129 Visualization and conversion of CAD model on a slicing software. r COS 130 Create a product using a 3D printer machine tool through different 3D printing Simulato techniques Robotics Simulato techniques 131 Study of different type of production systems used in industry- Job, Batch, Mass, techniques r COS 132 Study of different types of industries (Case Studies and Examples) r COS 133 Study of different types of industries (Case Studies and Examples) r COS 134 To create digital twins of given parts using smart manufacturing simulation software cos Simulato cos 135 students gain particical knowledge of setting up work picces, tooling, and executing different machining operations, stu	125		•	
126 Process Simulato 127 Study of FDM 3D Printing Technology. CO5 128 Process Simulato Simulato 129 Study of SLA 3D Printing Technology. r CO5 129 Visualization and conversion of CAD model on a slicing software. r CO5 130 Create a product using a 3D printer machine tool through different 3D printing techniques Process Simulato r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Simulato r CO5 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 Simulato r CO5 134 To create digital twins of given parts using smart manufacturing simulation software CO5 135 besign and implementation of Smart factory for Industry Revolution 4.2 CO5 136 Design and implementation of setting up work pieces, tooling, and executing finalities their components, controls, and functionalities. Through hands-on experiments, students gain parcical knowledge of setting up work pieces, tooling, and executing finalities their components, controls, and functionalities. Through experiments, students learn to analyse different parameters such debigning and executing different machining operations, students lean to write and debigning and execut	125		Simulato	
126 Study of FDM 3D Printing Technology. CO5 127 Study of LDM 3D Printing Technology. Process 128 Study of SLA 3D Printing Technology. r CO5 128 Study of SLA 3D Printing Technology. r CO5 129 Study of SLA 3D Printing Technology. r CO5 129 Visualization and conversion of CAD model on a slicing software. r CO5 130 Create a product using a 3D printer machine tool through different 3D printing techniques Robotics Simulato 131 Study of different type of production systems used in industry- Job, Batch, Mass. Process Simulato Simulato 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software c CO5 135 their components, controls, and functionalities. Through hands-on experiments, simulato their components, controls, and functionalities. Through hands-on experiments, simulato their components, controls, and functionalities. Through hands-on experiments, simulato their components, controls, and functionalities. Through hands-on experiments, simulato their components,		To write and simulate CNC Part program for milling operations.	r	CO5
Study of FDM 3D Printing Technology. r CO5 127 Study of LDM 3D Printing Technology. r CO5 128 Study of SLA 3D Printing Technology. r CO5 129 Visualization and conversion of CAD model on a slicing software. r CO5 130 Create a product using a 3D printer machine tool through different 3D printing Simulato techniques r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, Simulato Continuous (Case Studies and Examples) r CO5 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulaton software Simulato furting simulator software CO5 135 tsto familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, simulator machining operations. r CO5 136 Objective is to familiarize students with the operation of CNC machines. By designing and executing different machining poreations, students learn to write and kobotics simulato paths. r			Process	
Study of FDM 3D Printing Technology. r CO5 127 Study of LDM 3D Printing Technology. r CO5 128 Study of SLA 3D Printing Technology. r CO5 129 Visualization and conversion of CAD model on a slicing software. r CO5 130 Create a product using a 3D printer machine tool through different 3D printing Simulato techniques r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, Simulato Continuous (Case Studies and Examples) r CO5 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulaton software Simulato furting simulator software CO5 135 tsto familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, simulator machining operations. r CO5 136 Objective is to familiarize students with the operation of CNC machines. By designing and executing different machining poreations, students learn to write and kobotics simulato paths. r	126		Simulato	
127 Study of LDM 3D Printing Technology. Process Simulato 128 Study of SLA 3D Printing Technology. Process Simulato 129 Study of SLA 3D Printing Technology. Process Simulato 129 Visualization and conversion of CAD model on a slicing software. CO5 130 Create a product using a 3D printer machine tool through different 3D printing techniques Robotics 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Simulato 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 manufact manufact uring simulator Simulato co5 134 To create digital twins of given parts using smart manufacturing simulation software Simulato co5 Simulato co5 135 besign and implementation of Smart factory for Industry Revolution 4.2 CO5 Simulato r 136 Design and implementation of setting up work pieces, tooling, and executing their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics Simulato r 136 Objective is to enhance students' programming skill		Study of FDM 3D Printing Technology	r	CO5
127 Study of LDM 3D Printing Technology. r CO5 128 Study of SLA 3D Printing Technology. r CO5 129 Visualization and conversion of CAD model on a slicing software. r CO5 130 Create a product using a 3D printer machine tool through different 3D printing techniques Robotics Simulato r 130 Create a product using a 3D printer machine tool through different 3D printing techniques r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, Co5 Simulato r CO5 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software simulato r CO5 135 Students gain practical knowledge of setting up work pieces, tooling, and executing an partical knowledge of setting up work pieces, tooling, and executing a machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool parts. Robotics 136 Objective is to chance students how to optimize machining processes using CNC machines. Through hands-on experiments, simulato r CO5			Process	000
Study of LDM 3D Printing Technology. r CO5 128 Study of SLA 3D Printing Technology. Process Simulato 129 Visualization and conversion of CAD model on a slicing software. Process Formulato 130 Create a product using a 3D printer machine tool through different 3D printing techniques Robotics 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Forcess Simulato 132 Study of different types of industries (Case Studies and Examples) CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software Simulato r CO5 135 Study end filterent tabe students' programming skills for CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing different machining operations. CO5 136 Design and executing different machining operations, and create efficient tool paths. Simulato r CO5 137 machining seperiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining re	127			
128 Process Simulato 129 Study of SLA 3D Printing Technology. r 129 Visualization and conversion of CAD model on a slicing software. r 130 Create a product using a 3D printer machine tool through different 3D printing techniques Robotics r 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Simulato r 132 Study of different types of industries (Case Studies and Examples) Process Simulato r 133 Design and implementation of Smart factory for Industry Revolution 4.2 Robotics Simulato r 134 To create digital twins of given parts using smart manufacturing simulation software Simulato r 135 Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics Simulator r 136 Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. Simulato r 137 Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different paramet	127	Study of LDM 2D Drinting Technology	Simulato	CO5
128 Study of SLA 3D Printing Technology. r CO5 129 Process Simulato r CO5 130 Create a product using a 3D printer machine tool through different 3D printing techniques Robotics Simulato r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Simulato r CO5 132 Study of different types of industries (Case Studies and Examples) r CO5 CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software Simulato r CO5 135 the familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing Simulato r Simulato r CO5 136 designing and excuting different machining operations, students eart to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. CO5 136 designing and excuting different machining operations, students eart to analyse different parameters such as cutting speed, feed rate, and tool path strategies to ac		Study of LDM 3D Printing Technology.	r	COS
Study of SLA 3D Printing Technology. r CO5 129 Process Simulato Simulato 130 Create a product using a 3D printer machine tool through different 3D printing techniques Robotics 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Simulato 132 Study of different types of industries (Case Studies and Examples) Process Simulato 133 Design and implementation of Smart factory for Industry Revolution 4.2 Robotics Simulato 134 To create digital twins of given parts using smart manufacturing simulation software Simulato cO5 135 the familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing different machining operations. Robotics Simulato r 136 Objective is to tandifferent machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. Robotics Simulato r 136 Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, student learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cy				
129 Process Simulato 130 Create a product using a 3D printer machine tool through different 3D printing techniques r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Simulato r CO5 132 Study of different types of industries (Case Studies and Examples) Process Simulato r CO5 133 Study of different types of industries (Case Studies and Examples) r CO5 134 Study of different types of industries (Case Studies and Examples) r CO5 135 Study of different types of industries (Case Studies and Examples) r CO5 136 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 136 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 137 To create digital twins of given parts using smart manufacturing simulation software Simulato r CO5 136 Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. r CO5 136 Objective is to tac	128		Simulato	
129 Visualization and conversion of CAD model on a slicing software. Simulato r COS 130 Create a product using a 3D printer machine tool through different 3D printing techniques Robotics Frocess 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Frocess 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software Simulato r CO5 135 their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics Simulato r CO5 136 designing and executing different machining operations, students learn to write and designing and executing different machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction r CO5 137 machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, acc		Study of SLA 3D Printing Technology.	r	CO5
Visualization and conversion of CAD model on a slicing software.rCO5130Create a product using a 3D printer machine tool through different 3D printing r cofRobotics Simulato131Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples)Process r CO5132Study of different types of industries (Case Studies and Examples)rCO5133Study of different types of industries (Case Studies and Examples)rCO5134Study of different types of industries (Case Studies and Examples)rCO5135Design and implementation of Smart factory for Industry Revolution 4.2rCO5136Disgn and implementation of Smart factory for Industry Revolution 4.2Simulato rCO5137To create digital twins of given parts using smart manufacturing simulation softwareSimulato rCO5136Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Active is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining r co5Simulato r138Objective is			Process	
Visualization and conversion of CAD model on a slicing software.rCO5130Create a product using a 3D printer machine tool through different 3D printing r cofRobotics Simulato131Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples)Process r CO5132Study of different types of industries (Case Studies and Examples)rCO5133Study of different types of industries (Case Studies and Examples)rCO5134Study of different types of industries (Case Studies and Examples)rCO5135Design and implementation of Smart factory for Industry Revolution 4.2rCO5136Disgn and implementation of Smart factory for Industry Revolution 4.2Simulato rCO5137To create digital twins of given parts using smart manufacturing simulation softwareSimulato rCO5136Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Active is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining r co5Simulato r138Objective is	129		Simulato	
130 Create a product using a 3D printer machine tool through different 3D printing rechniques Robotics Simulato rechniques 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process 132 Study of different types of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software Simulato r CO5 0bjective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics Simulato r 136 designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool r CO5 137 as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction r CO5 138 Objective is to expose students how to optimize machining processes using CNC machines. Through experiments, studen		Visualization and conversion of CAD model on a slicing software.	r	CO5
130 Create a product using a 3D printer machine tool through different 3D printing r Simulato r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Simulato r CO5 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Study of different types of industries (Case Studies and Examples) r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software Simulato r CO5 135 their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics Simulato r CO5 136 designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. Robotics Simulato r CO5 137 as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction r Robotics Simulato r CO5 137 as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including sur			Robotics	
131 techniques r CO5 131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Process Simulato 132 Study of different types of industries (Case Studies and Examples) Process Simulato 133 Design and implementation of Smart factory for Industry Revolution 4.2 Robotics Simulato 134 To create digital twins of given parts using smart manufacturing simulation software Simulator cCO5 135 Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Simulato r 136 Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction r CO5 137 Through experiments, students can explore topics such as multi-axis machining, results, including surface finish, accuracy, and cycle time reduction Robotics Simulato r 138 Through experiments, students can explore topics such as multi-axis machining, results, including surface finish, accuracy, and cycle time reduction Robotics Simulato	120	Create a product using a 2D printer machine tool through different 2D printing		
131 Study of different type of production systems used in industry- Job, Batch, Mass, CO5 Process 132 Study of different types of industries (Case Studies and Examples) Process 132 Study of different types of industries (Case Studies and Examples) CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software Simulato r CO5 135 their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing Simulato r CO5 136 Objective is to teanhance students' programming skills for CNC machines. By designing and executing different machining operations, and create efficient tool paths. Robotics Simulato r 137 CO5 Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction r CO5 137 Through experiments, students can explore topics such as multi-axis machining, Robotics Simulato r 138 Through experiments, students can explore topics Simulato r	150		Sillulato	005
131 Study of different type of production systems used in industry- Job, Batch, Mass, Continuous (Case Studies and Examples) Simulato r CO5 132 Study of different types of industries (Case Studies and Examples) r CO5 133 Study of different types of industries (Case Studies and Examples) Robotics Simulato Simulato 133 Design and implementation of Smart factory for Industry Revolution 4.2 r CO5 134 To create digital twins of given parts using smart manufacturing simulation software Simulato Robotics 135 Students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics Simulato 136 Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. r CO5 137 as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction results, including surface finish, accuracy and cycle time reduction results, including surface finish, accuracy and cycle time reduction results, including surface finish, accuracy and cycle time		techniques	r	COS
132Continuous (Case Studies and Examples)rCO5133Study of different types of industries (Case Studies and Examples)rCO5133Design and implementation of Smart factory for Industry Revolution 4.2Robotics134To create digital twins of given parts using smart manufacturing simulation softwareSmart manufact uring simulator135To create digital twins of given parts using smart manufacturing simulation softwareCO5136Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulato r136CO5Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool rRobotics Simulato r137CO5Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining r esults, including surface finish, accuracy, and cycle time reduction rRobotics Simulato r138Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics				
132 Study of different types of industries (Case Studies and Examples) Process Simulato 133 To create digital twins of Smart factory for Industry Revolution 4.2 Robotics Simulato 134 To create digital twins of given parts using smart manufacturing simulation software Smart manufact uring 135 To create digital twins of given parts using smart manufacturing simulation software CO5 135 Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics 136 Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. Robotics 137 Machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction r Robotics 137 Dispective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, results, including surface finish, accuracy and cycle time reduction Robotics	131		Simulato	
132 Study of different types of industries (Case Studies and Examples) Simulato r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 Robotics Simulato r Simulato r 134 To create digital twins of given parts using smart manufacturing simulation software Smart manufact uring 135 To create digital twins of given parts using smart manufacturing simulation software CO5 136 Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics Simulato r 136 Gobjective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. Robotics Simulato r 137 Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, Robotics		Continuous (Case Studies and Examples)	r	CO5
132 Study of different types of industries (Case Studies and Examples) Simulato r CO5 133 Design and implementation of Smart factory for Industry Revolution 4.2 Robotics Simulato r Simulato r 134 To create digital twins of given parts using smart manufacturing simulation software Smart manufact uring 135 To create digital twins of given parts using smart manufacturing simulation software CO5 136 Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics Simulato r 136 designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. Robotics Simulato r 137 CO5 138 Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, Robotics			Process	
Study of different types of industries (Case Studies and Examples)rCO5133Design and implementation of Smart factory for Industry Revolution 4.2Robotics Simulato134Design and implementation of Smart factory for Industry Revolution 4.2rCO5134To create digital twins of given parts using smart manufacturing simulation softwareSmart manufact uring135To create digital twins of given parts using smart manufacturing simulation softwareCO5136Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulato r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction rCO5137Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, RoboticsSimulato Robotics	132			
133Robotics Simulato133Design and implementation of Smart factory for Industry Revolution 4.2Robotics Simulato r134Design and implementation of Smart factory for Industry Revolution 4.2Smart manufact uring134To create digital twins of given parts using smart manufacturing simulation softwareSmart manufact uring135To create digital twins of given parts using smart manufacturing simulation softwareCO5136Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulato r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137CO5138Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction rCO5138Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics	10-	Study of different types of industries (Case Studies and Examples)	r	CO5
133 Design and implementation of Smart factory for Industry Revolution 4.2 Simulato 134 Design and implementation of Smart factory for Industry Revolution 4.2 To cross 134 To create digital twins of given parts using smart manufacturing simulation software Simulato 135 To create digital twins of given parts using smart manufacturing simulation software CO5 135 Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations. Robotics 136 Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths. Robotics 137 Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining simulato results, including surface finish, accuracy, and cycle time reduction Robotics 138 Through experiments, students can explore topics such as multi-axis machining, Robotics Robotics		Study of uniform (gpos of industries (Sube Studies and Examples)	Pohotics	005
Design and implementation of Smart factory for Industry Revolution 4.2rCO5134Design and implementation of Smart factory for Industry Revolution 4.2rCO5134To create digital twins of given parts using smart manufacturing simulation softwareSmart manufact uring simulator135To create digital twins of given parts using smart manufacturing simulation softwareSmart manufact uring135Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulato r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137CO5138Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining r esults, including surface finish, accuracy, and cycle time reductionCO5138Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics	122			
134Smart manufact uring134To create digital twins of given parts using smart manufacturing simulation softwareSmart manufact uring135To create digital twins of given parts using smart manufacturing simulation softwareCO5136Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137CO5138Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction rSimulato r138Through experiments, students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics	155		Simulato	005
134manufact uring simulator134To create digital twins of given parts using smart manufacturing simulation softwaresimulator cO5135Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulator r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reductionRobotics Simulato r138Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics		Design and implementation of Smart factory for Industry Revolution 4.2	r	005
134To create digital twins of given parts using smart manufacturing simulation softwareuring simulator135Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulator r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulator r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction rRobotics CO5138Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics				
To create digital twins of given parts using smart manufacturing simulationsimulatorsoftwareCO5Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulato r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, Robotics				
softwareCO5135Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulato r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction Objective is to expose students to advanced CNC techniques and capabilities.Robotics138Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics	134		uring	
135Objective is to familiarize students with the operation of CNC machines, including their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics 		To create digital twins of given parts using smart manufacturing simulation	simulator	
135their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulato r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction CO5Robotics Simulato r138CO5		software		CO5
135their components, controls, and functionalities. Through hands-on experiments, students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Robotics Simulato r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction CO5Robotics Simulato r138CO5		Objective is to familiarize students with the operation of CNC machines, including		
135students gain practical knowledge of setting up work pieces, tooling, and executing machining operations.Simulato r136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction Objective is to expose students to advanced CNC techniques and capabilities.Robotics138Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics			Robotics	
machining operations.rCO5Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r136Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reductionRobotics Simulato r138Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics	135			
136Objective is to enhance students' programming skills for CNC machines. By designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reductionRobotics Simulato r138Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics			r	CO5
136designing and executing different machining operations, students learn to write and debug CNC programs, understand G-code instructions, and create efficient tool paths.Robotics Simulato r137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reductionRobotics Simulato r138Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, RoboticsRobotics	├		<u>н</u>	005
130 debug CNC programs, understand G-code instructions, and create efficient tool paths. Simulato r 137 Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction Robotics Simulato r 138 Objective is to expose students to advanced CNC techniques and capabilities. Robotics			D - 1	
debug CNC programs, understand G-code instructions, and create efficient toolSimulatopaths.rCO5Objective is to teach students how to optimize machining processes using CNCRoboticsmachines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reductionSimulato rObjective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining,Robotics	136			
137Objective is to teach students how to optimize machining processes using CNC machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reductionRobotics Simulato r138Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining,Robotics			Simulato	a a -
137machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reductionRobotics Simulato rCO5Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining,Robotics		L	r	CO5
137machines. Through experiments, students learn to analyse different parameters such as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reductionRobotics Simulato rCO5Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining,Robotics		Objective is to teach students how to optimize machining processes using CNC		
137 as cutting speed, feed rate, and tool path strategies to achieve desired machining results, including surface finish, accuracy, and cycle time reduction Simulato r CO5 Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, Robotics	127		Robotics	
results, including surface finish, accuracy, and cycle time reduction r CO5 Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, Robotics	15/			
Objective is to expose students to advanced CNC techniques and capabilities. Through experiments, students can explore topics such as multi-axis machining, Robotics			r	CO5
Through experiments, students can explore topics such as multi-axis machining, Robotics			r	
			Dobotion	
1J0 $ 1 $ $ 1$	138			
high-speed machining, tool change management, and complex part production to Simulato			Simulato	GO7
expand their knowledge and skills in CNC machining. r CO5		expand their knowledge and skills in CNC machining.	r	CO5

	Objective is to help students understand the impact of machining variables on the		
139	quality of machined parts. Through experiments, students can explore variables like	Robotics	
	tool geometry, tool material, cutting parameters, and machining strategies to analyse	Simulato	
	their effects on surface finish, dimensional accuracy, and tool life.	r	CO5
	Objective is to teach students how to use simulation and verification tools to validate		
140	and optimize CNC programs before executing them on the machine. Through	Robotics	
140	experiments, students can understand the importance of simulation in preventing	Simulato	
	collisions, verifying tool paths, and optimizing machining processes.	r	CO5
141	Objective is to develop students' problem-solving and troubleshooting skills in CNC		
	machining. Through experiments, students encounter and resolve issues such as tool	Robotics	
	breakage, incorrect tool paths, or machine errors, helping them develop critical	Simulato	
	thinking and decision-making abilities.	r	CO5

B. Tech Second Semester	
Branch- CSE/CSE-R/CS/IT/ECE/ECE(VLSI)/ME/CSE	(IOT)/M.Tech.(Integrated)
Subject Code-BASH0203	L - T - P
	3 – 1 - 0
Subject Name- Engineering Mathematics-II	No. of hours- 42

Course Objective- The objective of this course is to familiarize the engineering students with techniques of solving Ordinary Differential Equations, Fourier series expansion, Laplace Transform and vector calculus and its application in real world. It aims to equip the students with adequate knowledge of mathematics that will enable them in formulating problems and solving problems analytically.

Course Outcome –

CO1 - Apply the concept of differentiation to solve differential equations.

CO2- Apply the concept of convergence of sequence and series to evaluate Fourier series.

CO3- Apply the Laplace transform to solve ordinary differential equations.

CO4- Apply the concept of vector calculus to evaluate line, surface and volume integrals.

CO5- Solve the problems of Proportion & Partnership, Problem of ages, Allegation & Mixture, Direction, Blood relation, Simple & Compound interest, Geometry and Mensuration.

Cour	Course Content							
Uni t	Module	Topics Covered	Pedagog Y	Lecture Require d (T=L+P)	Aligned Practical/Assignment/L ab	CO Mappin g		
Uni t 1	Ordinary Differenti al Equation of Higher Order	Linear differential equation of nth order with constant coefficients, Cauchy- Euler equation, Simultaneous linear differential equations, Second order linear differential equations with variable coefficients, Solution by changing independent variable,	Smart Board And PPT	10 hours	1.1,1.2,1.3&1.4	CO1		

		Reduction of order, Normal form, Method of variation of parameters, Application of ordinary differential equation.				
		Definition of Sequence and series with examples, Convergence of sequence and series, Tests for	Smart			
Uni t 2	Sequences and series	convergence of series, (p- test, D' Alembert's test or Ratio test, Raabe's test). Fourier series, Half range Fourier sine and cosine series.	Board And PPT	8 hours	2.1&2.2	CO2
Uni t 3	Laplace Transfor m	Laplace transform, Existence theorem,	Smart Board And PPT	8 hours	3.1,3.2&3.3	CO3

simultaneous differential equations. Vector
Laplace transforms of derivatives and integrals, Initial and final value theorems, Unit step function, Dirac- delta function, Laplace transform of periodic function, Inverse Laplace transform, Convolution theorem, Application to solve simple linear and

Uni t 5	Aptitude- II	applications. Ratio, Proportion & Partnership, Problem of ages, Allegation & Mixture, Direction, Blood relation , Simple & Compound	Smart Board And PPT	8 hours	5.1,5.2&5.3	CO5
		Directional derivatives, Tangent and Normal planes. Vector Integration: Line integral, Surface integral, Volume integral, Gauss's Divergence Theorem, Green's theorem, Stoke's theorem (without proof) and their				

interest,	
Geometry	
and	
Mensuration,	
Puzzles.	

References-

Text Books:

- **1.** B. V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill Publishing Company Ltd..
- **2.** B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher.

Text Books:

- 1. E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons.
- 2. Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning.
- **3.** Maurice D. Weir, Joel Hass, Frank R.Giordano, Thomas, Calculus, Eleventh Edition, Pearson.
- 4. G.B Thomas, R L Finney, Calculus and Analytical Geometry, Ninth Edition Pearson.
- **5.** James Ward Brown and Ruel V Churchill, Fourier Series and Boundary Value Problems, 8th Edition-Tata McGraw-Hill.
- **6.** D. Poole, Linear Algebra : A Modern Introduction, 2nd Edition, Brooks/Cole.
- 7. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- **8.** Charles E Roberts Jr, Ordinary Diffrential Equations, Application, Model and Computing, CRC Press T&F Group.
- **9.** Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, 6th Edition, Tata McGraw-Hill.
- **10.**James Ward Brown and Ruel V Churchill, Complex Variable and Applications, 8th Edition, Tata McGraw-Hill.
- **11.**P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson India Education Services Pvt. Ltd.
- **12.**Advanced Engineering Mathematics By Chandrika Prasad, Reena Garg Khanna Publishing House, Delhi.
- **13.**Quantitative Aptitude by R.S. Aggrawal.

Links:

UNIT-1

https://www.youtube.com/watch?v=Ql42qcOLKfo&t=7s

https://www.youtube.com/watch?v=qlyx1kFTqT8

https://www.youtube.com/watch?v=n_3ZmnVnrc4

https://www.youtube.com/watch?v=19Vt7ds8Lvw

<u>UNIT-2</u>

https://www.youtube.com/watch?v=HUKR4LWrZ14&t=74s

https://www.youtube.com/watch?v=uei7JPnPpVg

https://www.youtube.com/watch?v=ummJvI0Ax2Q

https://www.youtube.com/watch?v=bWTmUWWZnhQ

https://www.youtube.com/watch?v=wpN1wn98XiA

https://www.youtube.com/watch?v=gK1Y11UxOhw

https://www.youtube.com/watch?v=Clwkvn77QrE&t=10s

https://www.youtube.com/watch?v=LGxE_yZYigI

<u>UNIT-3</u>

https://youtu.be/nmp-5tSp-UY

https://youtu.be/6ANT4eD6fll

https://youtu.be/c9NibpoQjDk

https://www.youtube.com/playlist?list=PLNOGIXC4kCBT8G5pWCrH71hmwaAvwsBY3

UNIT-4

https://youtu.be/lwgqKjA6wko

https://youtu.be/d4OyeuRTZNA

https://youtu.be/j36lJKSJMQk

https://youtu.be/DhwMOrl6Q9g

https://youtu.be/DhwMOrl6Q9g

https://youtu.be/fsMouTxce_A

https://youtu.be/yq5olnzDCGc

https://youtu.be/2SB3IVCwW1w

https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/line-integral	s-
vectors/v/line-integra	

https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/3dflux/v/vector-representation-of-a-su

http://nucinkis-lab.cc.ic.ac.uk/HELM/workbooks/workbook_29/29_2_surfac

https://www.youtube.com/watch?v=Mb6Yb-SGqio

https://www.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem/stokes-theorem/v/stokes-theorem-intuition

https://www.youtube.com/watch?v=eSqznPrtzS4

UNIT-5

https://www.GovernmentAdda.com

B. Tech Second Semester	B. Tech Second Semester						
Branch- CSE/CSE-R/CS/IT/M.Tech.(Int.)/ CSE(D CSE(AMIL)/CSE(AI)/CYS/ME/BT	S)/CSE(IOT)/						
Subject Code-BECH0201	L - T - P						
	3 - 1 - 0						
Subject Name- Basic Electrical & Electronics Engineering	No. of hours- 49						
Course Objective-							
 To provide the basics of DC and AC ana phase) electrical circuits. To study motors used in robotics, the bas calculation. 							

- 3. To impart elementary knowledge of layout of Power System, Earthing, and Energy Consumption.
- 4. To provide the knowledge of Diode, Display devices, Op-Amp, Sensors, IoT and its application.

Course Outcome –After successful completion of this course students will be able to

CO1: Apply the principle of KVL/KCL and network theorems for analysis of D.C circuit.

CO2: Analyze the steady state behavior of single phase and three phase AC electrical circuits, Earthing, and energy calculation.

CO3: Illustrate and analyze special motors, working principles of a single-phase transformer and components of Power system.

CO4: Explain the construction, working principle, and application of PN junction diode, Zener diode and Display devices.

CO5: Explain the concept of Op-Amp, Digital multimeter, Sensors, IoT and its applications.

Course Content

Uni t	Module	Topics Covered		Pedago gy	Lectur e Requir ed (T=L+ P)	Aligned Practical/Assignment /Lab	CO Mappi ng
Unit 1	D.C CIRCUIT ANALYSIS AND NETWORK THEOREMS	Concept network, Active passive elements, voltage current sources, concept linearity linear network,	of and and of and	Digital Smart Board, PPT, m- Tutor	10	Assignment 1.1, Assignment 1.2	CO1

		unilateral and bilateral elements, source transformation , Kirchhoff's Law: loop and nodal methods of analysis, star delta transformation , network theorems: Superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem.				
Unit 2	STEADY STATE ANALYSIS OF AC CIRCUIT	SinglephaseACcircuit:ACfundamentals,fundamentals,ofphasors,ofphasors,phasorrepresentationof sinusoidallyvaryingvoltagevoltageandcurrent,analysisofof	Digital Smart Board, PPT, m- Tutor	10	Assignment 2.1, Assignment 2.2	CO2

		series and parallel RLC circuits, j- notation, J Different types of power, power factor, resonance in series and parallel circuits. Importance of Earthing, Elementary calculations for energy consumption,				
Unit 3	SINGLE PHASE TRANSFORME R AND ELEMENTS OF POWER SYSTEM	SinglePhaseTransformer:Principleoperation,construction,EMFequation,equivalentcircuit,lossesand efficiency.IntroductiontoElementsofPowerSystem:General layoutofPower	Digital Smart Board, PPT, m- Tutor	10	Assignment 3.1, Assignment 3.2	CO3

		system, Conventional and renewable energy sources. Special motors used in robotics: Brushless motor, stepper motor, servomotor				
Unit 4	SEMICONDUC TOR DIODE AND THEIR APPLICATION S	Introduction of Semiconduct ors: Intrinsic and Extrinsic, P-N Junction Diode: Depletion layer, V-I characteristics , Half and Full Wave rectification, DC charger architecture for EV. Breakdown Mechanism: Zener and Avalanche, Zener Diode	Digital Smart Board, PPT, m- Tutor	10	Assignment 4.1, Assignment 4.2	CO4

		as Shunt Regulator. Display Devices Liquid Crystal Display (LCD), Light Emitting Diode (LED), Organic-Light Emitting Diode (O- LED), 7- segment display.				
Unit 5	OPERATIONAL AMPLIFIERS	Introduction, Op-Amp Basic, Practical Op- Amp Circuits (Inverting Amplifier, Noninverting Amplifier, Summing Amplifier, Integrator, Differentiator) Electronic Instrumentat ion	Digital Smart Board, PPT, m- Tutor	9	Assignment 5.1, Assignment 5.2	CO5

Dig	ital		
Mul	timeter		
(DN	4M),		
Тур	es of		
sens	sor,		
Intr	oduction to		
IoT	and its		
app	lication in		
sma	rt Grid.		

References-

Text Books:

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.
- 3. C.L. Wadhwa, Basic Electrical Engineering, Pearson Education
- 4. J.B. Gupta, Basic Electrical Engineering, Kataria& Sons
- 5. Robert L. Boylestad / Louis Nashelsky"Electronic Devices and Circuit Theory", Latest Edition, Pearson Education.
- 6. H S Kalsi, "Electronic Instrumentation", Latest Edition, TMH Publication.

Reference Books:

- 1. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 2. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press.
- 3. V. D. Toro, "Electrical Engineering Fundamentals", Pearson India.
- 4. David A. Bell, "Electronic Devices and Circuits", Latest Edition, Oxford University Press.
- 5. Jacob Millman, C.C. Halkias, Stayabratajit, "Electronic Devices and Circuits", Latest Edition, TMH.

Links:

UNIT-1

- 1. https://youtu.be/FjaJEo7knF4
- 2. https://youtu.be/UsLbB5k9iuY
- 3. https://youtu.be/1QfNg965OyE
- 4. https://youtu.be/wWihXHCOmUc

UNIT-2

- 1. https://youtu.be/ulGKCeOoR88
- 2. https://youtu.be/YLGrugmDvc0
- 3. https://youtu.be/0f7YkVorOmY
- 4. https://youtu.be/LM2G3cunKp4
- 5. https://youtu.be/S5464NnKOq4

UNIT-3

- 1. https://youtu.be/GgckE4H5AJE
- 2. https://youtu.be/OKkOif2JYRE
- 3. https://youtu.be/qSyUFp3Qk2I
- 4. https://youtu.be/GROtUE6ILc4
- 5. https://youtu.be/k_FqhE0uNEU

UNIT-4

- $1. \ https://youtu.be/EdUAecpYVWQ?list=PLwjK_iyK4LLBj2yTYPYKFKdF6kIg0ccP2$
- 2. https://youtu.be/MZPeRlst8rQ
- 3. https://youtu.be/qQucInufX-s
- 4. https://youtu.be/tPFI2_PdCYA
- 5. https://youtu.be/zA-UtZ-s9GA

UNIT-5

- 1. https://youtu.be/AuZ00cQ0UrE?list=PLwjK_iyK4LLDBB1E9MFbxGCEnmMMOAXOH
- 2. https://youtu.be/aU24RWIgJVs?list=PLwjK_iyK4LLDBB1E
- 3. https://youtu.be/c5NeTnp_poA
- 4. https://youtu.be/KLGbPgls18k

https://youtu.be/UFJzQH3G1Ko?list=PLVrieKUj5RceFRq5MKy-f-EHdumStFPLt

B. Tech.- Second Semester

Branch- Branch – CS/ CSE/CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI)/ ME/M. Tech (Integrated)/ BT

Subject Code- BASLH0202	L - T - P
	2 - 0 - 0
Subject Name- French Language	No. of hours- 24

Course Objectives:

1. To help the students learn to articulate in French language in day-to-day real-life situations.

2. To enable the students acquire the four basic skills LSRW (Listening, Speaking, Reading, and Writing) of language learning.

Course Outcomes:

After the completion of the course, the students will be able to

CO1 - Recognize the basic sounds, letters, numbers, words, and phrases of French.

CO2 - Develop basic French vocabulary.

CO3 - Use simple vocabulary and sentences in day-to-day life.

CO4 - Introduce a third person

CO5 - Develop basic skills in writing and speaking

			Course Co	ontent		
Uni t	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assignment /Lab	CO Mappi ng
Unit 1	Introducti on to French	 Basic greetings French letters, sounds and accents Numbers The subject pronouns Verbs- être, avoir Basic adjective s (How to change into feminine form) Introduct ory questions and Self introduct ion 	Audio-lingual method & reference of the learning aids	5 hours	Assignment on- Greetings, numbers, verb conjugation, adjective and basic questions	C01

Unit 2	Vocabular y Building	 Days of the week, months of the year and date Colors Basic vocabular y Articles (indefinit e and definite) How to make nouns plural Use of C'est and Ce sont Vocabula ry of nationalit y and professio ns Introduct ion of a friend 	Learning through attractive pictures, word-picture association & question- answer patterns.	6 hours	Assignment on- days, months, colors, articles, nationality, professions and making sentences plural	CO2
Unit 3	Everyday Common Simple Sentences	 Contract ed articles with à Vocabula ry of transport s Use of prepositi ons à and en Time Negation 	Communicati ve method and learning through videos, Total Physical Respond Methodolog y (TPR), activities might include: dialogue framing,	7 hours	Assignment on- contracted articles, transports, prepositions (à and en), time, negative sentences, and questions	CO3

Unit 4	Reading & Writing	 3 ways to frame question and how to reply according ly Vocabula ry of family members Introduct ion of a family member "ER" verbs with exception s 	question making. Tasked- Based Learning, Grammar- Translation Method, Reading Aids, Reference Books	3 hours	Assignment on- family members and verb conjugation	CO4			
Unit 5	Skilled writing	 How to fill a basic form How to write a brief post card in French. 	Communicati ve and Tasked- Based Learning method, activities might include: developing writing skills through various forms of exercises.	3 hours	Assignment on- writing post card in French and filling form	CO5			
Refe	Reference Books: 1. Edito 1 (Méthode de français/Cahiers d'exercices)								
	 2. Echo A1 (Méthode de français/Cahier d'exercices) 3. Saison A1 (Méthode de français/Cahier d'exercices) 								

B. Tech.- Second Semester

Branch- CS/ CSE/CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI)/ ME/M. Tech (Integrated)/ BT

Subj	ect Code – B	BASLH0203	L - T - P			
					2 - 0 - 0	
Subj	ect Name –	German Langua	ge		No. of hours- 24	
Cours	e Objectives:					
1. To	help the studer	nts learn to articulate	e in German langua	ge in day-to-	day real-life situations.	
	enable the stud age learning.	lents acquire the fou	r basic skills LSRW (Listening, S	peaking, Reading, and Writing	;) of
Cours	e Outcomes:					
After	the completion	of the course, the st	tudents will be able	to		
CO1 -	Understand an	d be familiar with bas	sic German Languag	e concepts a	nd the culture	
CO2-	Recognise the f	undamental vocabula	ary			
CO3-	Use simple voca	abulary and sentence	s in everyday conve	rsations		
CO4-	Read and write	simple sentences				
CO5-	Use complex se	ntences and develop	basic writing skills			
Cour	rse Content					
Uni t	Module	Topics Covered	Pedagogy	Lectur e Requir ed (T=L+P)	Aligned Practical/Assignmen t/Lab	CO Mappi ng
Uni t 1	Introducti on to German	 Letters and Numbers German Greetings and Self 	Audio-lingual method & reference books	4 Hours	Assignment on – Verb Exercises, Question Making	CO1

		 Introducti on Personal Pronouns and Verb Conjugati ons (Regular and Irregular Verbs) W- Question Simple Sentences 				
Uni t 2	Vocabular y building	 The concept of German Articles (Definite and Indefinite) Nouns and Articles Days, Months, & Seasons Adjectives Negation 	Learning through attractive pictures, audio- lingual method <u>Activities</u> will include pantomi ming, word- picture association & question-answer patterns.	4 Hours	Assignment on – Articles ,Vocabulary, Negative Sentences	CO2
Uni t 3	Everyday common simple sentences	 Basic directions Imperativ Date and Time Modal Verben (Basic everyday life conversati ons and making appointm ents) 	Communicative method and learning through videos, Total Physical Respond Methodology (TPR),	4 Hours	Assignment on – Sentence Making and Dialogue	CO3

Uni t 4	Reading and Writing	 Separable Verbs Possessiv e Pronouns Sentences Nommina tiv, Akkusativ, Dativ Translatio ns (English to German, German to English) Short Text and Form Filling 	Tasked-Based Learning, Grammar- Translation Method, Reading Aids, Reference Books	6 Hours	Assignment on – Translations and Sentence Making, Form Filling exercises	CO4
Uni t 5 Refe	Skilled Writing	 Changeab le Prepositio ns Present Perfect Tense Past Tense of – To have and To Be Health and Body, Vacations Leisure Activities, Celebratio ns E-mail Writing 	Communicative and Tasked- Based Learning method, Grammar- Translation, activities will include developing writing skills through various forms of exercises.	6 Hours	Assignment on - Vocabulary Exercises, Usage of Prepositions, Changing a sentence/Text from Present tense to past tense, E-mail writing	CO5

- Studio D A1 (Goyal Saab Publications)
- Langescheidt Dictionary

B. Tech.- Second Semester

Introducti

Japanese

on to

Uni

t 1

features of

Japanese

Japanese

Pronuncia tion

of

scripts

Audio-

lingual

method &

5

Hours

Branch -CS/ CSE/CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI)/ ME/M. Tech (Integrated)/ BT

Subject Code – BASLH0204				L - T - P			
					2 - 0 - 0		
Subj	ect Name – .	lapanese Langua	ge	No. of hours- 24			
Cours	e Objectives:						
1. To	help the studen	ts learn to articulate	in Japanese langu	age in day-to	o-day real-life situations.		
	enable the stud age learning.	ents acquire the four	[•] basic skills LSRW	(Listening, S	peaking, Reading, and Writing	;) of	
Cours	e Outcomes:						
After	the completion	of the course, the st	udents will be abl	e to			
CO1 -	Understand and	d be familiar with bas	ic Japanese Langu	age concepts	and the culture.		
CO2-	Recognise the fu	undamental vocabula	ry.				
CO3-	Use simple voca	bulary and sentences	in everyday convo	ersations.			
CO4-	Read and write	simple sentences.					
CO5-	Use complex sei	ntences and develop	basic writing skills.				
Coui	rse Content						
	-			Lecture			
Uni		Topics		Requir	Aligned	со	
t	Module	Topics Covered	Pedagogy	ed	Practical/Assignment	Mappi	
-				(T=L+P)	/Lab	ng	
		General					

Assignment on – Verb

CO1

Exercises, Question

Making

		Japanese words Classroom instruction s Daily greetings and expression s Numerals, Months name Days of the week, Time & Calendar Family members Vocabular y lessons 1&2 Sentence pattern & Example sentences Self- introducti on (jikoshoka i)	reference books			
Uni t 2	Vocabular y building	 Country, language, and people Basic conversati ons Vocabular y lessons 3&4 Use of patterns (KO, SO, AA, and DO) Conversat ions between guests and hosts Conversat ions 	Learning through attractive pictures, audio- lingual method. Activities might include pantomimin g, word- picture association	5 Hours	Assignment on – Articles, Vocabulary, and Negative Sentences	CO2

Uni t 3	Everyday common simple sentences	 between customers and shopkeepe rs Vocabular y lessons 5&6 Grammar explanatio n Colour & taste Conversat ions in post office Conversat ions with friends Making a request Making an enquiry – Railway Station Buying Fruits & Vegetable s Names of the Animals Question formation 	& question- answer patterns. Communicat ive method and learning through videos, Total Physical Respond Methodolog y (TPR), activities might include dialogue framing, question making.	5 Hours	Assignment on – Sentence Making and Dialogue	CO3
Uni t 4	Reading and Writing	 Scanning based Newspape r reading Transporta tion KANJI Form of Writing – 40 Characters Shopping Counters Basic Japanese grammar 	Tasked- Based Learning, Grammar- Translation Method, Reading Aids, Reference Books	4 Hours	Assignment on – Translations and Sentence Making	CO4

	(wa), \mathcal{O} (no), \mathcal{E} (to), \mathcal{E} (o), \mathcal{I} (ni), \mathfrak{t} (mo), \mathfrak{N} (ga), \mathfrak{N} (ga), \mathfrak{V} (ya). • Kara, Soshite • Grammar - Present, Past, Future • Adjectives • Vocabular y Lessons 7&8	Communicat			
Uni Skilled t 5 Writing	 Write short text on oneself. Grammar: Pronouns subject, object, possessive Modal verbs 	ive and Tasked- Based Learning method, Grammar- Translation, activities might include - developing writing skills through various forms of exercises.	5 Hours	Assignment on - Vocabulary Exercises, Usage of Prepositions, Changing a sentence/Text from Present tense to past tense.	CO5

Reference Book(s):

Minna no nihongo – N5

Link(s):

https://www.youtube.com/@NihonGoal/community

B. Tech.-Second Semester

Branch- CS/ CSE/CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI)/ ME/M. Tech (Integrated)/ BT

L - T - P
0 -0 - 6
No. of hours- 78 hours

Course Objective- To become familiar with Python's Object-Oriented Concepts, functional programming And create GUI application and to gain the knowledge of Python libraries.

Course Outcome –

CO1 - Implement classes and create instances in python

CO2- Implement GUI based Python application

CO3- Use Python libraries for data handling.

CO4- Analyze data using visualization libraries.

CO5- Analyze web scraping application for real world data

Course Co	Course Content							
Unit	Modu le	Topics Covered	Pedagogy	Lectur e Requir ed (T=L+P)	Aligned Practical/Assignm ent/Lab	CO Mapp ing		
Unit 1	Classe s and Objec ts	Introduction: Python Classes and objects, User-Defined Classes, Class Variables and Instance Variables	Lecture , Hands-on exercise, Demonstra tion, practical lab	4(3+1)	Learn to create python classes and objects.	1		
		Instance methods, Class method, static methods,		4(2+2)	Perform different types of class methods.	1		
		constructor in python, parametrized constructor,		3(3+2)	Create a constructor to initialize an object in Python, Different types of constructors,	1		

		Magic Methods in python, Object as an argument, Instances as Return Values, namespaces,		2(1+1)	Constructor overloading and chaining Implementation of Object as an argument, Instances and namespace	1
		Introduction to inheritance and polymorphism, Abstract Class, Introduction to Abstraction and Encapsulation		8(3+5)	Implementing inheritance and types of polymorphism.	1
Unit 2	Functi onal and GUI Progr ammi ng	Functional Programming: Immutability, Closures and Decorators, generators	Hands-on exercise, Demonstra tion, lectures, practical lab	6(2+4)	Implementation of Decorators and generators	2
		Co-routines, iterators, Declarative programming		3(2+1)	Implement the functions of iterators and co routines	2

		GUI Programming: Intro to GUI Programming, Settling widgets in the window's		3(0+3)	Demonstration of GUI interface.	2
		interior, Numeric Widgets,				
		Boolean Widgets, Selection Widgets, String Widgets, Date Picker, Color Picker, Container Widgets,		2(0+2)	Implement different types of GUI widgets.	2
		Creating a GUI Application, Tkinter, button, canvas		2(0+2)	Create GUI application using Tkinter and components.	2
Unit 3	Librar ies for Data Handl ing	NumPy: Basic Operation, Indexing, slicing and Iterating	Lecture , Hands-on exercise, Demonstra tion, practical lab	3(1+2)	Demonstration on numpy, and mathematical operations on numpy.	3

		Multidimensio nal arrays, NumPy Data types, Reading and writing data on Files		3(1+2)	Implementation of Multi-dimensional array.	
		SciPy: Introduction to SciPy, Create function, modules of SciPy.		3(1+2)	Learn to demonstrate the SciPy libraries.	
		Pandas : Series and Data Frames, Grouping, aggregation, Merge Data Frames,		3(1+2)	Learn to demonstrate the use of pandas, data frames	
		Generate summary tables, Group data into logical pieces, Manipulation of data		3(1+2)	Creating tables and groups.	
Unit 4	Librar ies in Data Visual izatio n	Matplotlib: Scatter plot, Bar charts, histogram, Stack charts	Lecture , Hands-on exercise, Demonstra tion, practical lab	3(1+2)	Learn to demonstrate the different visualization methods.	4

		1		4/0 5	1	
		Legend title		1(0.5+	Implementation	4
		Style, Figures		0.5)	on charts and	
		and subplots,			figures.	
		Plotting		3(1+2)	Implementation	4
		function in			on plots and	
		pandas,			figures.	
		Labelling and				
		arranging				
		figures, Save				
		plots.				
		Seaborn: style		3(1+2)	Implementation of	4
		function, color			seaborn library	
		palettes,				
		heatmaps				
		,distribution				
		plots, category				
		plot, regression				
		plot				
		Plotly :		2(1+1)	Implementation of	4
		Lineplots ,			different types of	
		Areaplots,			plots.	
		Scatterplots,				
		Bubbleplots ,				
		Stacked bar				
		charts,				
		Grouped bar		2(1+1)	Implementation of	4
		charts, Pie			charts.	
		charts, Tables,				
		Dashboards				
	V	Web Scraping:	Lecture ,	3(1+2)	Learn to scrap the	5
Unit 5	e b	Introduction,	Hands-on		data.	
	D S	Web Crawling	exercise,			
	b		l	l		

[[/	Deversion			1
		v/s Web	Demonstra			
	r a	Scruping, Oses	tion,			
		of web	practical			
	p i	Scraping,	lab			
	n	Components of				
	g	a Web Scraper,				
	W	working of a				
	1	Web Scraper,				
	t h	Crawl, Parse				
	P	and Transform				
	У	Store the Data				
	t					
	h					
	0 n					
	11					
		Rogutiful Course		2/1 - 21	Domonstration of	5
		Beautiful Soup:		3(1+2)	Demonstration of	ر ا
		Introduction to			web scrapping	
		Beautiful Soup			using Beautiful	
		library,			Soup.	
		Accessing Tags,				
		Navigable				
		Strings,				
		Navigating and				
		searching with				
		Beautiful Soup,				
		Web Scraping				
		Example:		4(1+3)	Learn to scrapping	5
		Scraping			of Flipkart	
		Flipkart			website.	
		Website				

	Introd uction to Githu b	2(1+1)	Implementation of Projects on Github.	5
References-				
Text Books:				
3. Allen B. edition,	Iorgan, Data Analysis from Sci Downey, "Think Python: How Updated for Python 3, Shroff Grinberg, Developing Web ap	v to Think Like a (/OʻReilly Publish	Computer Scientist", 2 ers, 2016	2nd
 Burkhai DOUG H Libr Exa Kenneth Learnin 	hillips, Python 3 Object-orient rd Meier, Python GUI Program HELLMANN, THE PYTHON 3 ST Im _2 (Developer's Library) 1s h A. Lambert, —Fundamentals g, 2012.	nming Cookbook ANDARD LIBRAR t Edition, Kindle	- Third ,Packt Y BY EXAMPLE, :Pyth Edition	3 Stan
Links: Unit 1	https://nptel.ac.in/courses/	/106/106/106106	5145/	
Unit 2	https://www.python-			
—	course.eu/python3_inherita	ance.php		
- Unit 3	course.eu/python3_inherita https://realpython.com/co programming-python/		-	

https://nptel.ac.in/courses/106/106/106106212/

LAB:

5

Total	Fotal No. of Practicals: 176								
List o	List of Practicals								
Lab No.	Unit	Торіс	Program Logic Building	CO Mapping					
1.1	1	Class and object	Write a program illustrating class definition and accessing class members.	CO 1					
1.2		Class and object	Write a program to implement default constructor, parameterized constructor, and destructor.	CO 1					
1.3	1	Class and object	Create a Python class named Rectangle constructed by a length and width. a. Create a method called area which will compute the area of a rectangle.	CO 1					
1.4	1	Class and object	 Create a class called Numbers, which has a single class attribute called MULTIPLIER, and a constructor which takes the parameters x and y (these should all be numbers). a. Write an instance method called add which returns the sum of the attributes x and y. b. Write a class method called multiply, which takes a single number parameter a and returns the product of a and MULTIPLIER. 	CO 1					

1.5	1	Class and object	Create a class named as Student to store the name and marks in three subjects. Use List to store the marks. a. Write an instance method called compute to compute total marks and average marks of a student.	CO 1
			b. Write a method called display to display student information.	
1.6	1	Class and object	 Write a program that has a class called Fraction with attributes numerator and denominator. a. Write a method called getdata to enter the values of the attributes. b. Write a method show to print the fraction in simplified form. 	CO 1
1.7	1	Class and object	 Write a program that has a class Numbers with a list as an instance variable. a. Write a method called insert_element that takes values from user. b. Write a class method called find_max to find and print largest value in the list. 	CO 1
1.8	1	Class and object	Create a class called Complex. Write a menu driven program to read, display, add and	CO 1

			subtract two complex numbers by creating corresponding instance methods.	
1.9	1	Class and object	 Write a program that has a class Point with attributes x and y. a. Write a method called midpoint that returns a midpoint of a line joining two points. b. Write a method called length that returns the length of a line joining two points. 	CO 1
1.10	1	Class and object	Write a Python program to create a class called "Rectangle" with attributes length and width. Include methods to calculate the perimeter and area of the rectangle.	CO 1
1.11	1	Class and object	Implement a Python class called "BankAccount" with attributes account number, account holder name, and balance. Include methods to deposit and withdraw money from the account.	CO 1
1.12	1	Class and object	Write a Python program to create a class called "Student" with attributes roll number, name, and marks in three subjects. Include a method to calculate the average marks of the student.	CO 1
1.13	1	Class and object	Implement a Python class called "Car" with attributes make, model, and year. Include methods to start the car, stop the car, and display its details.	CO 1

1.14	1	Magic Method	Write a program to illustrate the use of following built-in methods: a. hasattr(obj,attr) b. getattr(object, attribute_name [, default]) c. setattr(object, name, value) d. delattr(class_name, name)	CO 1
1.15	1	Inheritance	Write a program to create class Employee. Display the personal information and salary details of 5 employees using single inheritance.	CO 1
1.16	1	Inheritance	WAP that extends the class Employee. Derive two classes Manager and Team Leader from Employee class. Display all the details of the employee working under a particular Manager and Team Leader.	CO 1
1.17	1	Inheritance	Write a program that has a class Point. Define another class Location which has two objects (Location and destination) of class Point. Also, define a function in Location that prints the reflection on the y-axis.	CO 1
1.18	1	Polymorphism	Write a program to overload + operator to multiply to fraction object of fraction class which contain two instance variable numerator and denominator. Also, define the instance method simplify() to simplify the fraction objects.	CO 1

1.19	1	Polymorphism	26. Write a program to compare two-person object based on their age by overloading > operator.	CO 1
1.20	1	Polymorphism	Write a program to overload in operator.	CO 1
2.1	2	Functional Programming	WAP to Show the concept of inner function.	CO2
2.2	2	Functional Programming	WAP to create closure.	CO2
2.3	2	Functional Programming	WAP to create a decorator which will convert a string into upper case string.	CO2
2.4	2	Functional Programming	WAP to show the concept of nested decorator.	CO2
2.5	2	Functional Programming	WAP to calculate sum of 1,2,3,4,5 using reduce function.	CO2
2.6	2	Functional Programming	WAP to generate numbers from 1 to 10 using generator.	CO2
2.7	2	Functional Programming	WAP to decide number is even or odd using generator.	CO2

2.8	2	Functional Programming	WAP to generate square of 1,2,3,4,5,6,7,8,9,10 using generator.	CO2
2.9	2	Functional Programming	WAP to generate square of even number upto 10 using generator and save in list.	CO2
2.10	2	Functional Programming	WAP to make a co-routine which will print all name with prefix Dear.	CO2
2.11	2	Functional Programming	WAP to close a co-routine.	CO2
2.12	2	Functional Programming	WAP to iterate tuple using iter() and next() method.	CO2
2.13	2	Functional Programming	WAP to iterate a string using iter and next method.	CO2
2.14	2	GUI Programming	Hello World: Display a simple "Hello, World!" message box.	CO 2
2.15	2	GUI Programming	Button: Create a button that displays a message when clicked.	CO 2

2.16	2	GUI Programming	Entry: Create a text entry field and display the entered text.	CO 2
2.17	2	GUI Programming	Check button: Create a checkbox and display the selected options	CO 2
2.18	2	GUI Programming	Radio button: Create radio buttons and display the selected option.	CO 2
2.19	2	GUI Programming	List box: Create a list box and display the selected items.	CO 2
2.20	2	GUI Programming	Text: Create a text area and display the entered text.	CO 2
2.21	2	GUI Programming	Menu: Create a menu with different options.	CO 2
2.21	2	GUI Programming	Message: Display a message in a dialog box.	CO 2
2.23	2	GUI Programming	Progress bar: Create a progress bar that updates over time python	CO 2
2.24	2	GUI Programming	Scale: Create a scale widget and display the selected value.	CO 2

2.25	2	GUI	Spin box: Create a spin box and display the	CO 2
		Programming	selected value.	
2.26	2	GUI	Canvas: Create a canvas and draw shapes on it.	CO 2
		Programming		
2.27	2	GUI	Label Frame: Create a labeled frame with	CO 2
		Programming	widgets inside.	
2.28	2	GUI	Scrollbar: Add a scrollbar to a widget like a text	CO 2
		Programming	area or list box	
2.29	2	GUI	Frame: Create a frame and place widgets	CO 2
		Programming	inside it.	
2.30	2	GUI	Tree view: Create a tree view widget to display	CO 2
		Programming	hierarchical data	
2.31	2	GUI	Notebook: Create a notebook widget with	CO 2
		Programming	tabs.	
2.32	2	GUI	File Dialog: Open a file dialog to select a file.	CO 2
		Programming		
2.33	2	GUI	Color Dialog: Open a color dialog to select a	CO 2
		Programming	color.	
2.34	2	GUI	Button Counter: Create a button that	CO 2
		Programming	increments a counter when clicked.	
2.35	2	GUI	Checkbox List: Display a list of checkboxes and	CO 2
		Programming	show selected options.	
2.36	2	GUI	Dropdown Menu: Create a dropdown menu	CO 2
		Programming	with multiple options.	

2.37	2	GUI	Slider Value Display: Display the current value	CO 2
		Programming	of a slider widget.	
2.38	2	GUI	Text Input and Button: Take user input in a text	CO 2
		Programming	box and display it when a button is clicked.	
2.39	2	GUI	Radio Buttons: Present a set of options as	CO 2
		Programming	radio buttons and display the selected option.	
2.40	2	GUI	Progress Bar: Show the progress of a task using	CO 2
		Programming	a progress bar widget.	
2.41	2	GUI	Password Input: Create a password input field	CO 2
		Programming	that hides the entered characters.	
2.42	2	GUI	File Uploader: Enable users to upload files and	CO 2
		Programming	display the selected file name.	
3.1	3	NumPy	Creating Arrays: Create NumPy arrays using	CO 3
			various methods like np.array(), np.zeros(),	
			np.ones(), np.arange(), etc.	
3.2	3	NumPy	Array Shape and Size: Get the shape and size of	CO 3
			a NumPy array using the shape and size	
			attributes.	
3.3	3	NumPy	Array Indexing: Access and modify individual	CO 3
			elements of a NumPy array using indexing	
3.4	3	NumPy	Array Slicing: Extract a subset of elements from	CO 3
			a NumPy array using slicing.	
3.5	3	NumPy	Array Reshaping: Change the shape of a	CO 3
			NumPy array using the reshape() function.	
3.6	3	NumPy	Array Arithmetic: Perform basic arithmetic	CO 3
			operations (addition, subtraction,	
			multiplication, division) on NumPy arrays.	

3.7	3	NumPy	Array Broadcasting: Perform element-wise operations on arrays with different shapes using broadcasting rules.	CO 3
3.8	3	NumPy	Array Aggregation: Calculate aggregate values on arrays, such as sum(), min(), max(), mean(), etc. using NumPy	CO 3
3.9	3	NumPy	Array Transposition: Transpose a NumPy array using the transpose() function.	CO 3
3.10	3	NumPy	Write a program that demonstrates advanced array indexing techniques, such as indexing with boolean arrays or using fancy indexing to select specific elements or subsets of an array.	CO3
3.11	3	NumPy	Write a program using NumPy to perform data manipulation tasks, such as sorting arrays, removing duplicates, or finding unique elements in an array.	CO3
3.12	3	NumPy	Array Sorting: Sort the elements of a NumPy array using the sort() function.	CO 3
3.13	3	NumPy	Array Filtering: Filter elements in a NumPy array based on a condition using boolean indexing.	CO 3
3.14	3	NumPy	Array Statistics: Calculate statistical measures like mean, median, standard deviation using functions like np.mean(), np.median(), np.std().	CO 3
3.15	3	NumPy	Array Randomization: Generate random numbers or arrays using functions from the np.random module.	CO 3

3.16	3	NumPy	Array Dot Product: Compute the dot product	CO 3
5.10	5		of two NumPy arrays using the dot() function.	
3.17	3	NumPy	Array Matrix Operations: Perform matrix operations like matrix multiplication, matrix inverse using functions from the np.linalg module.	CO 3
3.18	3	NumPy	Array File I/O: Save and load NumPy arrays from files using functions like np.save() and np.load().	CO 3
3.19	3	NumPy	Array Masking: Create a mask array to select or manipulate specific elements of a NumPy array based on a condition.	CO 3
3.20	3	NumPy	Array Broadcasting: Understand and utilize broadcasting rules in NumPy for efficient computations.	CO 3
3.21	3	Scipy	Write a program to finds the cube root of values using scipy library.	CO 3
3.22	3	Scipy	Write a program to computes the 10**x element-wise using scipy library.	CO 3
3.23	3	Scipy	Write a SciPy program to calculate Permutations and Combinations.	CO 3
3.24	3	Scipy	Write a SciPy program to calculates the inverse of any square matrix.	CO 3
3.25	3	Scipy	Write a SciPy program to calculates the Eigenvalues and Eigenvector.	CO 3
3.26	3	Panda	Read and Load a CSV File into a Pandas DataFrame using pandas.read_csv.	CO 3

-				•
3.27	3	Panda	Access and Display the First N Rows of a	CO 3
			DataFrame using DataFrame.head(N).	
3.28	3	Panda	Access and Display the Last N Rows of a	CO 3
			DataFrame using DataFrame.tail(N).	
3.29	3	Panda	Retrieve Basic Information about a DataFrame	CO 3
			using DataFrame.info.	
3.30	3	Panda	Perform Descriptive Statistics on a DataFrame	CO 3
			using DataFrame.describe.	
3.31	3	Panda	Filter Rows of a DataFrame based on a	CO 3
			Condition using Boolean Indexing.	
3.32	3	Panda	Rename Columns in a DataFrame using	CO 3
			DataFrame.rename.	
3.33	3	Panda	Group Data in a DataFrame using	CO 3
			DataFrame.groupby.	
3.34	3	Panda	Perform Aggregation on Grouped Data using	CO 3
			GroupBy.agg.	
3.35	3	Panda	Sort a DataFrame by One or Multiple Columns	CO 3
			using DataFrame.sort_values.	
3.36	3	Panda	Perform Basic Arithmetic Operations on	CO 3
			Columns of a DataFrame.	
3.37	3	Panda	Apply a Function to Each Element or Column of	CO 3
			a DataFrame using DataFrame.apply or	
			DataFrame.applymap.	
3.38	3	Panda	Reshape Data using Pivot Tables using	CO 3
			DataFrame.pivot_table.	
3.39	3	Panda	Perform Data Visualization using	CO 3
			pandas.plotting or matplotlib.pyplot.	

3.40	3	Panda	Save a DataFrame to a CSV File using DataFrame.to_csv.	CO 3
3.41	3	Panda	Perform Data Sampling or Random Selection using DataFrame.sample.	CO 3
3.42	3	SciPy	Find the roots of a mathematical equation using SciPy's root-finding functions, such as scipy.optimize.root.	CO 3
3.43	3	SciPy	Fit a polynomial function to a set of data points using SciPy's curve fitting functions, such as scipy.optimize.curve_fit	CO 3
3.44	3	SciPy	Perform linear regression on a dataset using SciPy's linear regression functions, such as scipy.stats.linregress.	CO 3
3.45	3	SciPy	Calculate the Fast Fourier Transform (FFT) of a signal using SciPy's FFT functions, such as scipy.fft.fft.	CO 3
3.46	3	SciPy	Solve a system of linear equations using SciPy's linear algebra functions, such as scipy.linalg.solve.	CO 3
3.47	3	SciPy	Perform numerical integration using SciPy's integration functions such as scipy.integrate.quad.	CO 3
3.48	3	SciPy	Calculate the eigenvalues and eigenvectors of a square matrix using SciPy's linear algebra functions, such as scipy.linalg.eig.	CO 3
4.1	4	matplotlib	Create a Simple Line Plot using matplotlib.pyplot.plot.	CO 4
4.2	4	matplotlib	Create a Scatter Plot using matplotlib.pyplot.scatter.	CO 4

4.3	4	matplotlib	Create a Bar Chart using matplotlib.pyplot.bar.	CO 4
4.4	4	matplotlib	Create a Histogram using matplotlib.pyplot.hist.	CO 4
4.5	4	matplotlib	Create a Pie Chart using matplotlib.pyplot.pie.	CO 4
4.6	4	matplotlib	Create a Box Plot using matplotlib.pyplot.boxplot.	CO 4
4.7	4	matplotlib	Create a Heatmap using matplotlib.pyplot.imshow.	CO 4
4.8	4	matplotlib	Customize Plot Labels and Titles using matplotlib.pyplot.xlabel, matplotlib.pyplot.ylabel, and matplotlib.pyplot.title.	CO 4
4.9	4	matplotlib	Customize Plot Colors, Line Styles, and Marker Styles using matplotlib.pyplot.plot parameters.	CO 4
4.10	4	matplotlib	Add Gridlines to a Plot using matplotlib.pyplot.grid.	CO 4
4.11	4	matplotlib	Add Legends to a Plot using matplotlib.pyplot.legend.	CO 4
4.12	4	matplotlib	Create Subplots using matplotlib.pyplot.subplots.	CO 4
4.13	4	matplotlib	Save a Plot as an Image File using matplotlib.pyplot.savefig.	CO 4
4.14	4	matplotlib	Create 3D Plots using mpl_toolkits.mplot3d module.	CO 4

4.15	4	matplotlib	Create Error Bars on a Plot using matplotlib.pyplot.errorbar.	CO 4
4.16	4	matplotlib	Customize Axis Ticks and Tick Labels using matplotlib.pyplot.xticks and matplotlib.pyplot.yticks.	CO 4
4.17	4	matplotlib	Create a Bar Plot with Stacked Bars using matplotlib.pyplot.bar and the bottom parameter.	CO 4
4.18	4	seaborn	Create a Scatter Plot using seaborn.scatterplot.	CO 4
4.19	4	seaborn	Create a Line Plot using seaborn.lineplot.	CO 4
4.20	4	seaborn	Create a Bar Plot using seaborn.barplot.	CO 4
4.21	4	seaborn	Create a Histogram using seaborn.histplot.	CO 4
4.22	4	seaborn	Create a Box Plot using seaborn.boxplot.	CO 4
4.23	4	seaborn	Create a Violin Plot using seaborn.violinplot.	CO 4
4.24	4	seaborn	Create a Heatmap using seaborn.heatmap.	CO 4
4.25	4	seaborn	Create a Pair Plot using seaborn.pairplot.	CO 4
4.26	4	seaborn	Create a Joint Distribution Plot using seaborn.jointplot.	CO 4
4.27	4	seaborn	Create a KDE (Kernel Density Estimate) Plot using seaborn.kdeplot.	CO 4

	•			
4.28	4	seaborn	Create a Categorical Scatter Plot using seaborn.stripplot.	CO 4
4.29	4	seaborn	Create a Categorical Bar Plot using seaborn.countplot.	CO 4
4.30	4	seaborn	Create a Facet Grid using seaborn.FacetGrid.	CO 4
4.31	4	seaborn	Customize Plot Colors and Styles using seaborn.set_palette and seaborn.set_style.	CO 4
4.32	4	seaborn	Add Error Bars to a Plot using seaborn.barplot or seaborn.pointplot with the ci parameter.	CO 4
4.33	4	seaborn	Create a Clustered Heatmap using seaborn.clustermap.	CO 4
4.34	4	seaborn	Create a Regression Plot using seaborn.regplot.	CO 4
4.35	4	seaborn	Create a Stacked Bar Plot using seaborn.barplot with the hue parameter.	CO 4
4.36	4	Plotly	Write a program to draw a line chart using Plotly	CO 4
4.37	4	Plotly	Write a program to draw a Bar chart using Plotly	CO 4
4.38	4	Plotly	Write a program to draw a scatter plot using Plotly	CO 4
4.39	4	Plotly	Write a program to draw a Bubble chart using Plotly	CO 4
4.40	4	Plotly	Write a program to draw a Violin Plots using Plotly	CO 4

4.41	4	Plotly	Write a program to draw a Gant chart using Plotly	CO 4
5.1	5	Web scrapping	Write a Python program to find the title tags from a given html document.	CO 5
5.2	5	Web scrapping	Write a Python program to retrieve all the paragraph tags from a given html document.	CO 5
5.3	5	Web scrapping	Write a Python program to get the number of paragraph tags of a given html document.	CO 5
5.4	5	Web scrapping	Write a Python program to extract the text in the first paragraph tag of a given html document.	CO 5
5.5	5	Web scrapping	Write a Python program to find the length of the text of the first <h2> tag of a given html document.</h2>	CO 5
5.6	5	Web scrapping	Write a Python program to find the text of the first <a> tag of a given html text.	CO 5
5.7	5	Web scrapping	Write a Python program to find the href of the first <a> tag of a given html document.	CO 5
5.8	5	Web scrapping	Write a Python program to a list of all the h1, h2, h3 tags from the webpage python.org.	CO 5
5.9	5	Web scrapping	Write a Python program to extract all the text from a given web page.	CO 5
5.10	5	Web scrapping	Write a Python program to print the names of all HTML tags of a given web page going through the document tree.	CO 5

r			т
5	Web scrapping	Write a Python program to retrieve children of the html tag from a given web page.	CO 5
5	Web scrapping	Write a Python program to retrieve all descendants of the body tag from a given web page.	CO 5
5	Web scrapping	Write a Python program to create a Beautiful Soup parse tree into a nicely formatted Unicode string, with a separate line for each HTML/XML tag and string.	CO 5
5	Web scrapping	Write a Python program to find the first tag with a given attribute value in an html document.	CO 5
5	Web scrapping	Write a Python program to find tag(s) beneath other tag(s) in a given html document.	CO 5
5	Web scrapping	Write a Python program to find tag(s) directly beneath other tag(s) in a given html document.	CO 5
5	Web scrapping	Write a Python program to find the siblings of tags in a given html document.	CO 5
5	Web scrapping	Write a Python program to find tags by CSS class in a given html document.	CO 5
5	Web scrapping	Write a Python program to change the tag's contents and replace with the given string.	CO 5
5	Web scrapping	Write a Python program to add to a tag's contents in a given html document.	CO 5
	5 5 5 5 5 5 5 5	5Web scrapping5Web scrapping	111

5.21	5	Web scrapping	Write a Python program to insert a new text within a url in a specified position.	CO 5
5.22	5	Web scrapping	Write a Python program to insert tags or strings immediately before specified tags or strings.	CO 5
5.23	5	Web scrapping	Write a Python program to insert tags or strings immediately after specified tags or strings.	CO 5
5.24	5	Web scrapping	Write a Python program to extract a tag or string from a given tree of html document.	CO 5
5.25	5	Web scrapping	Write a Python program to remove a tag from a given tree of html document and destroy it and its contents.	CO 5

B. Tech. – Second Semester

Branch – CS/ CSE/CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI)/ ME/M. Tech (Integrated)/ BT

Subject Code-BASLH0251

					0-0-4
Subject Name	- Communication for Ca	areer Enhancem	ent		No. of hours- 48
Course Object	ives:				
(Comm To impa To impr To help	ove proficiency in the Eng non European Framewor art business communicatio ove verbal communicatio acquire collaborative and for career enhancement.	rk of Reference). on skills. n skills for the wo l critical evaluation	rkplace.	ntermediate level (B1/B2) of CE	FR
Course Outcor	ne:				
After the com	pletion of the course, tl	he students will	be able to		
CO1 – Improve	proficiency in English to t	he next level of Cl	EFR.		
C O2 - Develop k	ousiness communication s	kills.			
C O3 - Demonsti	rate improved verbal com	munication skills f	for the work	place.	
	ollaboration and critical e				
-	te in the placement proce		9		
	te in the placement proce				
Course Conter	nt				
Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assignment/La b	CO Mappi g
Interactions Level 1:	 Greet and take leave of people. Introducing oneself and others 	Includes audio- visual learning of situational interactions.	4	Incorporate video – audio. Role – play (record)	CO1

Play Acting Objective: To develop communication skills by engaging in spontaneous conversations and role-playing in different situations Outcome: Participants will demonstrate effective communication,	Includes performative use of communicatio n skills through role playing.	6	Stage performance (record)	CO4
Objective: To foster networking skills and create a comfortable environment through interactive icebreaker activities Outcome: Participants will engage in meaningful conversations, build connections, and create a positive networking atmosphere	Collaborative exercises and challenges to facilitate learning.	4		CO2
s in different situations • Telephone conversation s Outcome: Students will know how to meet, greet, and strike a conversation. Networking and Icebreaker Activities			Gamification	

	active listening, and adaptability in various scenarios				
Interactions Level 2: Introducing the vocabulary and sentence structures of polite conversations	Vocabulary Building Objective: To emphasize the importance of courteous words and tone while communicating. Outcome: Students will use better vocabulary and manners in conversations	Audio-visual aid for vocabulary building and understanding of sentence structure.	4	Through audio-video clips	CO1
	Presentations (Individual/Group) on topics of choice Objective: To deliver a clear and engaging presentation. Outcome: Improved presentation skills and effective communication.	Podcast-based learning covering varied storytelling and informative narratives.	4	Group activity utilizing podcast type recording	CO5
	Group Discussion Objective: To develop effective communication, listening, and critical thinking skills through engaging in group discussions Outcome: Participants will actively contribute to discussions, express their thoughts coherently, and consider different perspectives	Group activity to foster skills of persuasion, and discussion.	6	Group activity	CO5

Debates				
Objective: To improve persuasive speaking, critical thinking, and argumentation skills through engaging in formal debates Outcome: Participants will articulate their viewpoints, construct logical arguments, and engage in respectful debate	Video-clip- based learning followed by practice.	6	Video clips of great debates to be shared first.	CO3
Communication and Cinema Objective: To observe various aspects of speaking – pronunciation, tone, intonation, pitch and pauses in various movie clips Outcome: Participants will analyse to understand the articulation of various sounds and demonstrate full range of expression in communication.	Includes movies and shows to be observed and discussed.	4	Display movie clip from montage of movies like My Fair Lady, English Vinglish.	CO1
Impromptu Speaking Objective: To enhance spontaneous thinking, quick decision-making, and effective communication skills through impromptu speaking exercises Outcome: Participants will	Situation- based speaking challenge	4	Trainer to share tips on how to think on one's feet. JAM sessions (to be recorded)	CO5

deliver coherent and engaging speeches on given topics within a limited time frame Mock Job Interviews				
Objectives: To improve interview skills, communication, and self-presentation in a simulated job interview setting Outcome: Participants will demonstrate confidence, effective communication, and interview techniques necessary for successful job interviews	Mock interview simulated sessions	6	Simulated exercise	CO5

Suggested Readings:

- 1. Rizvi, M. Ashraf. Resumes and Interviews: The Art of Winning. Tata McGraw Hill. New Delhi. 2008
- 2. Lesikar and Flatley. *Basic Business Communication: Skills for Empowering the Internet Generation*. 10th Edition. Tata McGraw-Hill.2005.
- 3. McGrath, E. H. and S. J. *Basic Managerial Skills for All*. Ninth Edition. PHI Learning Pvt. Ltd. New Delhi. 2012.
- 4. Thill, J. V. & Bovee, G. L. (1993). Excellence in Business Communication. McGraw Hill, New York.
- 5. Bowman, J.P. & Branchaw, P.P. (1987). Business Communications: From Process to Product. Dryden Press, Chicago.

Free Apps to Practice English:

- 11. Memrise <u>https://www.memrise.com</u>
- 12. Open Language https://open-language.en.uptodown.com
- 13. Duolingo <u>https://englishtest.duolingo.com/applicants</u>
- 14. Rosetta Stone https://www.rosettastone.com/product/mobile-apps/
- 15. FluentU https://www.rosettastone.com/product/mobile-apps/

	ect Cod		L T P	
				0 2
Subje	ect Nan	ne- Basic Electrical & Electronics Engineering	Lab No.	of Hours: 32
Course	e Objecti	ve-		
be	havior of	will learn laws and theorems used for analysis of electrical cir single phase, transformer and different types of safety devices will learn about semiconductors diodes applications, Op-Amp		steady state
Cour	se Out	come-		
CO1-	• Apply th	ne principle of KVL/KCL and theorem to analysis DC Electric	circuits.	
single _I CO3-	phase as v	trate the behavior of AC circuits connected to single-phase AC well as three phase electrical circuits. e efficiency of a single-phase transformer and energy consump		isure power in
Total List o Lab			d IoT. Program Logic Building	CO Mapping
Total List o Lab	No. of of Prac	Practicals ticals Image: Topic 1. To Verify Kirchhoff's laws of a circuit 2. To Verify Superposition Theorem of a circuit. 3. To Verify Thevenin's Theorem of a circuit. 4. To Verify Norton's Theorem of a circuit. 5. To Verify Maximum Power Transfer Theorem of a	Program Logic	
Total	No. of of Prac	Practicals ticals 1. To Verify Kirchhoff's laws of a circuit 2. To Verify Superposition Theorem of a circuit. 3. To Verify Thevenin's Theorem of a circuit. 4. To Verify Norton's Theorem of a circuit.	Program Logic	Mapping

	Distribution etc. Perform Energy audit of labs and rooms of different blocks.	
IV	 11. Study of Cathode Ray Oscilloscope and perform: a) Calibration of CRO b) Component testing using CRO c) Draw the VI- characteristics of Diode. 12. To design half wave and full wave rectifier circuits using diode. 13. To generate random numbers using 7-Segment display using decoder IC 	CO4
V	 14. Design Op-Amp circuit for the following operations. a) inverting, b) non-inverting, c) adder, d) differentiator e) integrator circuit 15. To study wheat stone bridge by using load cell sensor. 16. To understand the concept of Wireless Home Automation System based on IoT for controlling lights and fans. 	CO4

B. Tech.-Second Semester

Branch- CS/ CSE/CSE (R)/ IT/CSE(DS)/CSE(IOT)/CSE(AIML)/CSE(AI)/CYS/ ECE/ECE(VLSI)/ ME/M. Tech (Integrated)/ BT

Subject Code-BCSEH0251	L - T - P
	0-0-6
Subject Name-C Programming	No. of hours-60

Course Objective-The objective of a C programming course is to provide students with a solid foundation in the C programming language. The course aims to familiarize students with the syntax, concepts, and principles of C programming, as well as develop their ability to write efficient and effective C code. They will be able to develop complex real-world applications.

Course outcomes:	
CO 1: Implement and trace the execution of conditional and iteration	К1
programs.	КЗ
CO 2: Implement and trace the execution of conditional and iteration programs.da	КЗ
CO 3: Acquire the knowledge of memory allocation and binding, array,	КЗ
structure to solve complex problems	К4
CO 4: Compare and contrast between Structure and union along with their applications	
CO5: Develop Complex real-world applications	

Course Content

Uni t	Module	Topics Covered	Pedagogy	Lecture Require d (T=L+P)	Aligned Practical/Assta ignment/Lab	CO Mappin g
1	Introduction to Algorithm and C Program	Programming using C: Concepts of Algorithm and Flowchart, Translator and its types, Applications of C programming , Structure of C program, Overview of compilation and execution process in an	T3, R1, Chalk & Duster/PPT/Onli ne Programs	2+2	Basic Program in C	C01

Tokens &	IDE, transition from algorithm to program, Syntax, logical errors and Run time errors, object and executable code, Keywords,				
Operators	identifiers, constant, data types. Operators and their types, Arithmetic expressions and precedence: Operators, operator precedence and associativity, type conversion, mixed operands	T3, R1, Chalk & Duster/PPT/Onli ne Programs	3+3	Basic Program in C	CO1
Conditional Branching	if, else-if, nested if - else, switch statements, use of break, and default with switch	T3, R1, Chalk & Duster/PPT/Onli ne Programs	1+2	Programs using Conditional Statement	C01

	Iteration and loops:	Concept of loops, for, while and do- while, multiple loop variables, use of break and continue statements, nested loop.	T3, R1, Chalk & Duster/PPT/Onli ne Programs	1+2	Programs using Looping Statement	CO1
	Functions:	Concept of Sub- programming , function, types of functions, passing parameters to functions: call by value Definition,	T3, R1, Chalk & Duster/PPT/Onli ne Programs	3+3	Function Programs	CO2
11	Recursion	Definition, Types of recursive functions, Tower of Hanoi problem,	T3, R1, Chalk & Duster/PPT/Onli ne Programs	1+2	Recursion Programs	CO2
	Storage:	scope of variable, local and global variables, Nesting of Scope, Storage classes: Auto, Register,	T3, R1, Chalk & Duster/PPT/Onli ne Programs	1+1	Programs showing use of Storage	CO2

		Static and Extern				
	Pointers:	defining and declaring pointer, pointer arithmetic and scaling, Pointer Aliasing. call by reference	R1, R3, R4 Chalk & Duster/PPT/ Labs	2+2	Programs illustrating use of Pointers Arithmetic/Addressing/ Call by Reference	CO2
111	Arraya:	Array notation and representatio n (one and two dimensional), array using pointers, manipulating array elements,2-D array s used in matrix computation.	R1, R3, R4 Chalk & Duster/PPT/ Labs	2+2	Programs illustrating use of Pointers Arithmetic/Addressing/ Call by Reference	CO3
	Strings:	Introduction, initializing strings, accessing string elements, Array of strings, Passing strings to functions, String functions like Strcat,	R1, R3, R4 Chalk & Duster/PPT/ Labs	2+3	Use of Arrays both Single and Multi- Dimensional.	CO3

		strcmp, strcpy and any other functions				
	Structure:	Introduction, Initializing, defining and declaring structure, accessing members, Operations on individual members, Operations on structures, Structure within structure, Array of structure	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	2+2	Program Based on structure implementation	CO4
IV	Union:	Introduction , Initializing, defining and declaring structure, Accessing members, Operations on individual members, Operations on Union, Difference between Structure and Union	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	1+1		CO4
	Dynamic Memory Allocation	Introduction, Library functions–	T1, T2, R1, R2 Chalk & Duster/PPT/	1+1	Programs allocating memory during run time and manipulations	CO4

		malloc, calloc, realloc and free.	Labs			
	File Handling	Basics, File Types, File operations, File pointer, File opening modes, File handling functions, Command Line Arguments, File handling through command line argument, Record I/O in files	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	2+4	Implementation of Data Files and Command Line Arguments	CO5
V	Introduction to Embedded Programmi ng	Introduction to Embedded System, Factors for Selecting the Embedded Programming Language, Difference Between C and Embedded C, Keyword, Datatypes, Components of Embedded Program, Program, Program Structure, Basic concepts of	T1, T2, R1, R2 Chalk & Duster/PPT/ Labs	2+4	Example on Embedded Programs	CO5

Embedded		
Programming		
, Defining		
Macros,		
Types & File		
Inclusion,		
Pre-processor		
directives		
implementati		
on		

References-

Textbooks:

(T1) Herbert Schildt, "C: The Complete Reference", Osbourne McGrawHill, 4thEdition, 2002.

(T2) Computer Concepts and Programming in C, E Balaguruswami, McGrawHill

(T3) Let Us C by Yashwant P.Kanetkar. BPB publication

(T4) K.R Venugopal, "Mastering C", TMH

(T5) Yashwant P. Kanetkar, "Working with C", BPB publication

Reference Books:

(R1) The C programming by Kernighan Brain W.and Ritchie Dennis M., Pearson Education.

(R2) Computer Science-A Structured Programming Approach Using C, by Behrouz A. Forouzan, Richard F. Gilberg, Thomson, Third Edition, Cengage Learning-2007.

(R3) Computer Basics and C Programming by V.Rajaraman, PHI Learning pvt. Limited, 2015.

(R4) Schrum's Outline of Programming with C by Byron Gottfried, McGraw-Hill

(R5) Computer Fundamentals and Programming in C.Reema Thareja, Oxford Publication

Links:

E-Book Links:

(E1)<u>https://en.wikibooks.org/wiki/C_Programming</u>

(E3) https://www.goodreads.com/book/show/6968572-ansi-c-programming

LAB:

List	of Practi	cal		
Lab No.	Unit	Торіс	Program Logic Building	CO Mapping
1.1	1	Pattern Printing	Half pyramid of *	CO1
1.2	1	Pattern Printing	Half pyramid of numbers	CO1
1.3	1	Pattern Printing	Half pyramid of alphabets	CO1
1.4	1	Pattern Printing	Inverted half pyramid of *	CO1
1.5	1	Pattern Printing	Inverted half pyramid of numbers	CO1
1.6	1	Pattern Printing	Full pyramid of *	CO1
1.7	1	Pattern Printing	Full pyramid of numbers	CO1
1.8	1	Pattern Printing	Inverted full pyramid of *	CO1
1.9	1	Pattern Printing	Pascal's triangle	CO1
1.10	1	Pattern Printing	Floyd's triangle	CO1
1.11	1	Pattern Printing	Half pyramid of *	CO1
1.12	1	Pattern Printing	Half pyramid of numbers	CO1
1.13	1	Pattern Printing	Half pyramid of alphabets	CO1

1.14	1	Pattern Printing	<u>C Program to Print Diamond Pattern</u>	CO1
1.15	1	Pattern Printing	<u>C Program to Print Floyd's Triangle</u>	CO1
1.16	1	Pattern Printing	<u>C Program to Print Pascal Triangle</u>	CO1
1.17	1	Pattern Printing	Star Pattern Programs in C	CO1
1.18	1	Pattern Printing	Pyramid Patterns in C	CO1
1.19	1	Decision Making and Iterative programming using screen design	 Write a C program for a matchstick game being played between the computer and a user. Your program should ensure that the computer always wins. Rules for the game are as follows: There are 21 matchsticks. The computer asks the player to pick 1, 2, 3 or 4 matchsticks. After the person picks, the computer does its picking. Whoever is forced to pick up the last matchstick loses the game. 	CO1
1.20	1	Decision Making and Iterative programming using screen design	Write a program that plays tic-tac-toe. The tic-tac-toe game is played on a 3x3 grid the game is played by two players, who take turns. The first player marks move with a circle, the second with a cross. The player who has formed a horizontal, vertical, or diagonal sequence of three marks wins. Your program should draw the game board, ask the user for the coordinates of the next mark, change the players after every successful move, and pronounce the winner.	CO1
1.21	1	Decision Making and Iterative programming	Design a Calculator which performs Number system conversion	CO1
1.22	1	Decision Making and Iterative programming	<u>C Program to Simulate a Simple arithmetic Calculator</u>	CO1
1.23	1	Decision Making and Iterative programming	<u>C Program to Evaluate the Given Polynomial Equation</u>	CO1

1.24	1	Decision Making and Iterative programming	<u>C Program to Find Mean, Variance and Standard</u> <u>Deviation</u>	CO1
1.25	1	Decision Making and Iterative programming	<u>C Program to Add Two Complex Numbers</u>	CO1
1.26	1	Decision Making and Iterative programming	<u>C Program to Find Power of a Number</u>	CO1
1.27	1	Decision Making and Iterative programming	<u>C Program to Calculate Pow (x,n)</u>	CO1
1.28	1	Decision Making and Iterative programming	<u>C program to Find the Sum of Arithmetic Progression</u> <u>Series</u>	CO1
1.29	1	Decision Making and Iterative programming	<u>C program to Find the Sum of Geometric Progression</u> <u>Series</u>	CO1
1.30	1	Decision Making and Iterative programming	<u>C program to Find the Sum of Harmonic Progression</u> <u>Series</u>	CO1
1.31	1	Decision Making and Iterative programming	<u>C Program to Find Sum of Series 1 + 1/2 + 1/3 + 1/4 +</u> + 1/N	CO1
1.32	1	Decision Making and Iterative programming	<u>C Program to Find Sum of Series 1^2 + 2^2 + + n^2</u>	CO1
1.33	1	Decision Making and Iterative programming	<u>C Program to Find Sum of Series 1^3 + 2^3 + 3^3 + +</u> <u>n^3</u>	CO1
1.34	1	Decision Making and Iterative programming	<u>C Program to Find Sum of the Series 1/1! + 2/2! + 3/3! +</u> 1/N!	CO1

1.35	1	Decision Making and Iterative programming	Accept five subject marks of the student. Calculate his percentage. If his percentage is below 35 mark him "fail". If between 35to 45 "Third Div", 45-60 Second and above 60 then first. Do this process till the user wishes. No field should be left blank. Design a program which displays following options on screen	CO1 CO1
			 Figure Exit Enter Choice Once valid choice is entered it executes further. 	
			If choice one is entered, then it should display	
			1.TRAINGLE	
			2.SQUARE	
			3.RHOMBUS	
			4. TRAPEZIUM	
			5. RETURN TO PREVIOUS MENU	
			ENTER CHOICE	
			Once valid choice is entered it executes further.	
			After that it ask for specific data and prints the area and volume and perimeter/circumference of the respective figure.	
1.36			After that a choice is to be asked for	

			Do you wish to continue (Y/N)? And should work accordingly. Before Every Menu the screen should be cleared,	
1.37	1	Decision Making and Iterative programming	<u>C Program to Find the Largest Number Among Three</u> <u>Numbers</u>	CO1
1.38	1	Decision Making and Iterative programming	<u>C Program to Find the Roots of a Quadratic Equation</u>	CO1
1.39	1	Decision Making and Iterative programming	<u>C Program to Check Leap Year. Evaluate all the cases.</u>	CO1
1.40	1	Decision Making and Iterative programming	<u>C Program to Check Whether a Number is Positive or</u> <u>Negative</u>	CO1
1.41	1	Decision Making and Iterative programming	<u>C Program to Check Whether a Character is an Alphabet</u> or not	CO1
1.42	1	Decision Making and Iterative programming	<u>C Program to Calculate the Sum of Natural Numbers</u>	CO1
1.43	1	Decision Making and Iterative programming	<u>C Program to Find Factorial of a Number</u>	CO1
1.44	1	Decision Making and Iterative programming	<u>C Program to Generate Multiplication Table</u>	CO1

1.45	1	Decision Making and Iterative programming	<u>C Program to Display Fibonacci Sequence</u>	CO1
1.46	1	Decision Making and Iterative programming	<u>C Program to Find GCD of two Numbers</u>	CO1
1.47	1	Decision Making and Iterative programming	<u>C Program to Find LCM of two Numbers</u>	CO1
1.48	1	Decision Making and Iterative programming	<u>C Program to Display Characters from A to Z Using Loop</u>	CO1
1.49	1	Decision Making and Iterative programming	<u>C Program to Reverse a Number using looping concepts</u>	CO1
1.50	1	Decision Making and Iterative programming	<u>C Program to Check Whether a Number is Palindrome or</u> <u>Not</u>	CO1
1.51	1	Decision Making and Iterative programming	<u>C Program to Check Whether a Number is Prime or Not</u>	CO1
1.52	1	Decision Making and Iterative programming	<u>C Program to Check Armstrong Number</u>	CO1
1.53	1	Decision Making and Iterative programming	<u>C Program to Display Armstrong Number Between Two</u> Intervals	CO1
1.54	1	Decision Making and Iterative programming	<u>C Program to Display Factors of a Number</u>	CO1
1.55	1	Decision Making and Iterative programming	<u>C Program to Make a Simple Calculator Using</u> switchcase	CO1

1.56	1	Decision Making and Iterative programming	<u>C Program to Check Whether a Number is Even or Odd</u>	CO1
1.57	1	Decision Making and Iterative programming	<u>C Program to Check Whether a Character is a Vowel or</u> <u>Consonant</u>	CO1
1.58	1	Decision Making and Iterative programming	<u>C Program to Find the Largest Number Among Three</u> <u>Numbers</u>	CO1
1.59	1	Decision Making and Iterative programming	<u>C Program to Check Whether a Number is Positive or</u> <u>Negative</u>	CO1
1.60	1	Decision Making and Iterative programming	<u>C Program to Calculate the Sum of Natural Numbers</u>	CO1
1.61	1	Decision Making and Iterative programming	<u>C Program to Find Factorial of a Number</u>	CO1
1.62	1	Decision Making and Iterative programming	<u>C Program to Generate Multiplication Table</u>	CO1
1.63	1	Decision Making and Iterative programming	<u>C Program to Display Fibonacci Sequence</u>	CO1
1.64	1	Decision Making and Iterative programming	<u>C Program to Display Prime Numbers Between Intervals</u> <u>Using Function</u>	CO1
1.65	1	Decision Making and Iterative programming	<u>C Program to Check Prime or Armstrong Number Using</u> <u>User-defined Function</u>	CO1
1.66	1	Decision Making and Iterative programming	<u>C Program to Check Whether a Number can be Expressed</u> as Sum of Two Prime Numbers	CO1

1.67	1	Decision Making and Iterative programming	<u>C Program to Find the Sum of Natural Numbers using</u> <u>Recursion</u>	CO1
2.1	2	Recursion	<u>C Program to Find Factorial of a Number Using Recursion</u>	CO2
2.2	2	Recursion	<u>C Program to Find G.C.D Using Recursion</u>	CO2
2.3	2	Function	<u>C Program to Convert Binary Number to Decimal and</u> <u>vice-versa</u>	CO2
2.4	2	Recursion	C program to calculate the power using recursion	CO2
2.5	2	Function	<u>C Program to Check Prime or Armstrong Number Using</u> <u>User-defined Function</u>	CO2
2.6	2	Recursion	<u>C Program to Find the Sum of Natural Numbers using</u> <u>Recursion</u>	CO2
2.7	2	Case Study	Design a calculator	CO2
		Case Study	 Design a Menu Driven program which performs the functions as per the menu 1. Add Details of students 2. Search the student data 3. Display the records 4. Exit Enter the Choice: 	
			Note: Choice must be between 1-4 Only. Other than that, an error message must be displayed and entry should be done again Name must not be blank, and first letter	
			should be alphabet Student details should contain	
			Name. Age, Class, Roll-No	
2.9	2	Recursion	C Program to add two number using recursion.	CO2

2.10	2	Recursion	C Program to find sum of digit of number using recursion.	CO2
2.11	2	Recursion	Write a method in C which will remove any given character from a String.	CO2
3.1	3	Array	C Program to Calculate Average Using Arrays	CO3
3.2	3	Array	<u>C Program to Find Largest Element in an Array</u>	CO3
3.3	3	Array	C Program to search an element	CO3
3.4	3	Array	<u>C Program to Add Two Matrices Using Multi-dimensional</u> <u>Arrays</u>	CO3
3.5	3	Array	<u>C Program to Multiply Two Matrices Using Multi-</u> dimensional Arrays	CO3
3.6	3	Array	<u>C Program to Find Transpose of a Matrix</u>	CO3
3.7	3	Array	<u>C</u> program to illustrate Point Arithmetic	CO3
3.8	3	Array	C Program to Access Array Elements Using Pointer	CO3
3.9	3	Array	<u>C Program to Find Largest Number Using Dynamic</u> <u>Memory Allocation</u>	CO3
3.10	3	Array	C Program to Calculate Average Using Arrays	CO3
3.11	3	Array	<u>C Program to Find Largest Element in an Array</u>	CO3
3.12	3	Array	<u>C Program to Calculate Standard Deviation</u>	CO3
3.13	3	String Handling	<u>C Program to Find the Frequency of Characters in a String</u>	CO3
3.14	3	String Handling	<u>C Program to Count the Number of Vowels, Consonants</u> and so on	CO3
3.15	3	String Handling	<u>C Program to Remove all Characters in a String Except</u> <u>Alphabets</u>	CO3
3.16	3	String Handling	<u>C Program to Find the Length of a String</u>	CO3
3.17	3	String Handling	C Program to Concatenate Two Strings	CO3
3.18	3	String Handling	<u>C Program to Copy String Without Using strcpy()</u>	CO3
3.19	3	String Handling	<u>C Program to Sort Elements in Lexicographical Order</u> (Dictionary Order)	CO3

3.20	3	String Handling	<u>C Program to Find the Frequency of Characters in a String</u>	CO3
3.21	3	String Handling	Write a method in C which will remove any given character from a String.	CO3
3.22	3	String Handling	Write a program in C to count occurrence of a given character in a String.	CO3
3.23	3	String Handling	Write a program in C to check if two Strings are Anagram.	CO3
3.24	3	String Handling	Write a program in C to check a String is palindrome or not.	CO3
3.25	3	String Handling	C program to check given character is vowel or consonant.	CO3
3.26	3	String Handling	C program to check given character is digit or not.	CO3
3.27	3	String Handling	C program to replace the string space with a given character.	CO3
3.28	3	String Handling	C program to convert lowercase char to uppercase of string.	CO3
3.29	3	String Handling	C program to convert lowercase vowel to uppercase in string.	CO3
3.30	3	String Handling	C program to delete vowels in a given string.	CO3
3.31	3	String Handling	C program to count Occurrence Of Vowels & Consonants in a String.	CO3
3.32	3	String Handling	C program to print the highest frequency character in a String.	CO3
3.33	3	String Handling	C program to Replace First Occurrence Of Vowel With '-' in String.	CO3
3.34	3	String Handling	C program to count alphabets, digits and special characters.	CO3
3.35	3	String Handling	C program to separate characters in a given string.	CO3
3.36	3	String Handling	C program to remove blank space from string.	CO3
3.37	3	String Handling	C program to count blank space from string.	CO3
3.38	3	String Handling	C program to concatenate two strings.	CO3

3.39	3	String Handling	C program to remove repeated character from string.	CO3
3.40	3	String Handling	C program to calculate sum of integers in string.	CO3
3.41	3	String Handling	C program to print all non-repeating character in string.	CO3
3.42	3	String Handling	C program to copy one string to another string.	CO3
3.43	3	String Handling	C Program to sort characters of string.	CO3
3.44	3	String Handling	C Program to sort character of string in descending order.	CO3
3.45	3	Arrays	Write a program in C for, In array 1-100 numbers are stored, one number is missing how do you find it.	CO3
3.46	3	Arrays	Write a program in C for, In a array 1-100 multiple numbers are duplicates, how do you find it.	CO3
3.47	3	Arrays	Write a program in C to find first duplicate number in a given array.	CO3
3.48	3	Arrays	Write a program in C to remove duplicate elements form array in C.	CO3
3.49	3	Arrays	Write a program in C for, Given two arrays 1,2,3,4,5 and 2,3,1,0,5 find which number is not present in the second array.	CO3
3.50	3	Arrays	Write a program in C for, How to compare two array is equal in size or not.	CO3
3.51	3	Arrays	Write a program in C to find largest and smallest number in array.	CO3
3.52	3	Arrays	Write a program in C to find second highest number in an integer array.	CO3
3.53	3	Arrays	Write a program in C to find top two maximum number in array?	CO3
3.54	3	Arrays	C program to print array in reverse Order.	CO3
3.55	3	Arrays	C program to reverse an Array in two ways.	CO3
3.56	3	Arrays	C Program to calculate length of an array.	CO3
3.57	3	Arrays	C program to insert an element at end of an Array.	CO3

3.58	3	Arrays	C program to insert element at a given location in Array.	CO3
3.59	3	Arrays	C Program to delete element at end of Array.	CO3
3.60	3	Arrays	C Program to delete given element from Array.	CO3
3.61	3	Arrays	C Program to delete element from array at given index.	CO3
3.62	3	Arrays	C Program to find sum of array elements.	CO3
3.63	3	Arrays	C Program to print all even numbers in array.	CO3
3.64	3	Arrays	C Program to print all odd numbers in array.	CO3
3.65	3	Arrays	C program to perform left rotation of array elements by two positions.	CO3
3.66	3	Arrays	C program to perform right rotation in array by 2 positions.	CO3
3.67	3	Arrays	C Program to merge two arrays.	CO3
3.68	3	Arrays	C Program to find highest frequency element in array.	CO3
4.1	4	Structure	<u>C Program to Store Information of a Student Using</u> <u>Structure</u>	CO4
4.2	4	Structure	<u>C Program to Store Information of Students Using</u> <u>Structure</u>	CO4
4.3	4	Structure	<u>C Program to Store Data in Structures Dynamically</u>	CO4
4.4	4	Structure	<u>C Program to Store Information of a Student Using</u> <u>Structure</u>	CO4
4.5	4	Structure	<u>C Program to Add Two Distances (in inch-feet system)</u> using Structures	CO4
4.6	4	Mini Project	Snake Game Mini Project in C is a basic console program with no graphics. You may play the famous "Snake Game" in this project exactly as you would anywhere else. To move the snake, use the up, down, right, and left arrows.Food is placed at various co-ordinates on the screen for the snake to consume. The snake's length and score will both rise by one element each time it consumes the food.	CO4

5.1	5	File Handling	<u>C Program to Write a Sentence to a File</u>	CO5
5.2	5	File Handling	<u>C Program to Read the First Line From a File</u>	CO5
5.3	5	File Handling	<u>C Program to showcase use of DMA</u>	CO5
5.4	5	File Handling	<u>C Program to Write a record to a File</u>	CO5
5.5	5	File Handling	<u>C Program to Read the last Line From a File</u>	CO5
5.6	5	Command Line Argument	Program to create a file using command line argument	CO5
5.7	5	File Handling	Program to copy one file into another	CO5
5.8	5	Macros	Implement macro handling	CO5
5.9	5	File Handling	Program to write a structure into a file and display its content	CO5
5.10	5	File Handling	Program to search a record in a file	CO5
5.11	5	Macro	Program to implement multi line macro and Conditional Macros	CO5
5.12	5	Graphics	Program to draw Circle/Rectangle/Triangle/ A Hut/with colors in it	CO5
5.13	5	Hardware	Program to shut down/ sleep a system if not component is being touched	CO5
5.14	5	File Handling	Write a program in C to create and store information in a text file.	CO5
5.15	5	File Handling	Write a program in C to read an existing file.:	CO5
5.16	5	File Handling	Write a program in C to write multiple lines to a text file.:	CO5
5.17	5	File Handling	Write a program in C to read the file and store the lines in an array.	CO5
	5	File Handling	Write a program in C to find the number of lines in a text file.	CO5

	5	File Handling	Write a program in C to find the content of a file and the number of lines in a text file.	CO5
5.19				
	5	File Handling	Write a program in C to count the number of words and characters in a file.	CO5
5.20				
5.21	5	File Handling	C Program to list all files and sub-directories in a directory	CO5
5.22	5	File Handling	C Program to count number of lines in a file	CO5
5.23	5	File Handling	C Program to print contents of file	CO5
5.24	5	File Handling	C Program to copy contents of one file to another file	CO5
5.25	5	File Handling	C Program to merge contents of two files into a third file	CO5
5.26	5	File Handling	C Program to read records from a data file	CO5
5.27	5	File Handling	C Program to count number of lines, words, characters, blank space in a file	CO5
5.28	5	File Handling	<u>C Program to Illustrate how User Authentication is Done</u>	CO5
5.29	5	File Handling	<u>C Program to Shutdown Computer in Linux</u>	CO5
5.30	5	File Handling	<u>C Program to Compute First N Fibonacci Numbers using</u> <u>Command Line Arguments</u>	CO5
5.31	5	File Handling	<u>C Program to Generate Fibonacci Series using Command</u> Line Argument	CO5
5.32	5	Case Study	Design an ATM Simulation using C	CO5
	5	Case Study	manage the information of workers working in a firm or organization using this Employee Management System.The file handling technique is used here to save the data in a particular file, and you get the notion of this project as soon as you hear the name.This project uses the Insert, Edit, and Delete file actions, but the sole constraint is that you can only display the data, not search for any data item in particular. If you	
5.33			have more experience with C, you may alter this program by using the searching strategies.	

		<u>Th</u>	e following modules are included in this project.	
		Ad	dd Employee Details	
		<u>Cr</u> ı	 <u>Edit Employee details</u> <u>Modify Employee</u> <u>Delete Employee</u> <u>eate a Database using C file structure</u> 	
5	5		Library in charge is facing problems in handling	CO5
5.34			ooks and customers. Design a solution using C garding his problem	
5.35	5		 Design a Simple Result System in the C programming language. You can keep track of the pupils' grades and update them at any time. Students might be given marks based on their performance in each subject. The project is straightforward and straightforward to use. The system is written entirely in the C programming language. You will be greeted with a "Welcome Screen" when you build and execute the project. Following that, many choices will appear on your computer screen. Select the required project modification function from the drop-down menu. The admin is in charge of the majority of the system. He has the ability to add and remove teachers. He can also add students. Following the addition of instructors, the administrator may finally assign grades to the pupils. All of the data has been preserved. 	CO5